Conjugados Armónicos

Sofía Taylor

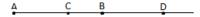
Febrero 2011

1 Puntos Conjugados Armónicos

Sean A y B dos puntos en el plano. Sea C un punto en el segmento AB y D uno sobre la prolongación de AB tal que:

$$\frac{AC}{BC} = \frac{AD}{BD} = k \tag{1}$$

donde k es una razón dada.



En otras palabras, los puntos C y D dividen interna y externamente al segmento AB en la razón k. Entonces, diremos que los puntos C y D son armónicos conjugados de A y B. Esta herramienta es muy útil para resolver problemas geómetricos y como veremos, tiene mucha relación con propiedades ya estudiadas.

Teorema 1 Si C y D son conjugados armónicos de A y B, entonces A y B son conjugados armónicos de C y D.

Demostración Como C y D son conjugados armónicos de A y B, se tiene que:

$$\frac{AC}{BC} = \frac{AD}{BD} \tag{2}$$

Reordenando,

$$\frac{CB}{DB} = \frac{CA}{DA} \tag{3}$$

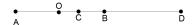
es decir que A y B dividen a CD en la misma razón, y por lo tanto son conjugados armónicos de C y D.

Cabe destacar que uno de los puntos siempre estará dentro del segmento y otro por fuera. Entonces, vamos a llamar $cuaterna\ arm\'onica$ al conjunto ordenado de cuatro puntos $A,\,C,\,B$ y D que cumplen las relaciones descritas.

2 Problemas Resueltos

1. Sean A, C, B y D cuatro puntos conjugados armónicos y sea O el punto medio de AB. Demostrar que $OC \cdot OD = OA^2$

Solución



Como son puntos conjugados armónicos, sabemos que:

$$\frac{AC}{BC} = \frac{AD}{BD} \tag{4}$$

Remplazando las longitudes de los segmentos en términos del punto O y teniendo en cuenta que OA = OB, obtenemos

$$\frac{AO + OC}{OA - OC} = \frac{OD + AO}{OD - AO} \tag{5}$$

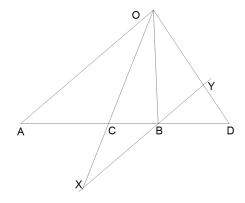
Al desarrollar la ecuación anterior y simplificar se obtiene

$$OC \cdot OD = OA^2 \tag{6}$$

El inverso de esto tambien es cierto y se puede demostrar como ejercicio (Problema Propuesto 1).

2. Sea A, C, B y D una cuaterna armónica y sea O un punto que no pertenece a la recta que la contiene. La recta que pasa por B y es paralela a OA corta a OC y OD en X y Y respectivamente. Demostrar que XB = YB

Solución



Como $XB \parallel OA$, los triángulos OAC y XBC son semejantes. Análogamente, $YB \parallel OA$ y por lo tanto los triángulos OAD y YBD son semejantes. De esto se tiene

$$\frac{OA}{XB} = \frac{AC}{BC} \quad y \quad \frac{OA}{YB} = \frac{AD}{BD} \tag{7}$$

Además se sabe que es una cuaterna armónica, de donde

$$\frac{AC}{BC} = \frac{AD}{BD} \tag{8}$$

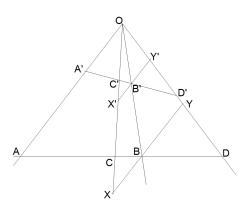
y por lo tanto,

$$\frac{OA}{XB} = \frac{OA}{YB} \tag{9}$$

Y de esto se obtiene YB = XB.

3. Teorema 2 Dada una cuaterna armónica, se tienen cuatro rectas concurrentes que pasan cada una por uno de los puntos. Entonces, cualquier otra recta cortará a estas cuatro rectas en otra cuaterna armónica.

Demostración Sean A, C, B y D los cuatro puntos de la cuaterna armónica y las cuatro rectas concurren en el punto O como se ve en la figura. Se traza otra recta cualquiera que corta a las rectas anteriores en A', C', B' y D'.



Tracemos una recta paralela a AO que pase por B y corte a OC y OD en X y Y respectivamente. Luego tracemos otra paralela a AO que pase por B' y corte a OC y OD en X' y Y' respectivamente. Por el problema anterior se sabe que XB = YB y como $XY \parallel X'Y'$, por el Teorema de Tales se puede ver que X'B' = Y'B'.

Así llegamos a que el problema se reduce al inverso del problema anterior, que se debe demostrar como ejercicio (Problema propuesto 3). Es decir, se reduce a demostrar que si X'B' = Y'B' y $X'B' \parallel A'O$, entonces A', B', C' y D' son conjugados armónicos.

Las cuatro rectas concurrentes en O forman lo que se lama un *haz* armónico, que es simplemente un conjunto de cuatro rectas concurrentes que pasan cada una por uno de cuatro puntos conjugados armónicos.

4. Sea A, C, B y D una cuaterna armónica, y sea P un punto exterior a la recta ACBD. Demostrar que $\angle CPD = 90^{\circ}$ y sólo si $\angle APC = \angle BPC$

Solución Primero demostremos que si $\angle APC = \angle BPC$, entonces $\angle CPD = 90^{\circ}$. En este caso, PC es la bisectriz interna del ángulo APB y por el Teorema de la Bisectriz se tiene que:

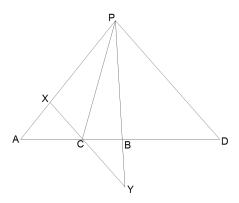
$$\frac{AC}{BC} = \frac{AP}{BP} \tag{10}$$

Por otro lado, como son conjugados armónicos, se tiene que

$$\frac{AC}{BC} = \frac{AD}{BD} = \frac{AP}{BP} \tag{11}$$

y por lo tanto la recta PD es la bisectriz externa de $\angle APB$ y como sabemos que las bisectrices interna y externa son perpendiculares, el ángulo CPD es recto.

Ahora el caso contrario, cuando $\angle CPD = 90^{\circ}$. Tracemos por C una recta paralela a PD que corta a PA y PB en X y Y respectivamente.

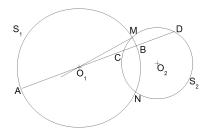


Como PD y PC son perpendiculares, también lo serán PC y XY. Además sabemos que XC = YC, de donde el triángulo XPY es isósceles con PX = PY y PC es tanto la mediatriz como la bisectriz. Es decir, los ángulos APC y BPC son congruentes.

5. Sean S_1 y S_2 dos circunferencias con centros O_1 y O_2 y radios r_1 y r_2 . Una recta que pasa por O_1 corta a S_1 en A y B y a S_2 en C y D. Demostrar que A, B, C y D son conjugados armónicos si y sólo si S_1 y S_2 son ortogonales

Solución Dos circunferencias son ortogonales si las tangentes por uno de los puntos de corte son perpendiculares entre si, o equivalentemente, si los radios que van a un punto de corte son perpendiculares.

Primero demostraremos que si las dos circunferencias son ortogonales entonces A, B, C y D es una cuaterna armónica. Las circunferencias se cortan en M y N y como son ortogonales, O_1M es perpendicular a O_2M y por lo tanto O_1M es tangente a S_2 .



Entonces la potencia de O_1 con respecto a S_2 es

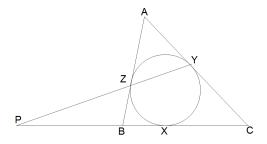
$$Ps_2(O_1) = O_1 M^2 = r_1^2 = O_1 B^2 = O_1 C \cdot O_1 D \tag{12}$$

Por lo visto en el primer problema resuelto, lo anterior es equivalente a que los puntos A, B, C y D son conjugados armónicos.

Ahora partiremos de que forman una cuaterna armónica y revertimos el proceso. Por el Problema Resuelto 1, sabemos que $O_1B^2 = O_1C \cdot O_1D$. Como $O_1B = O_1M = r_1$ se tiene que $O_1M^2 = O_1C \cdot O_1D$ de donde O_1M tiene que ser tangente a S_2 (Por la Potencia de O_1 respecto a S_2) y por lo tanto las circunferencias tienen que ser ortogonales.

6. En $\triangle ABC$ sean X, Y y Z los puntos de tangencia del incírculo con los lados BC, AC y AB respectivamente. La recta YZ corta al lado BC en P. Demostrar que B y C son conjugados armónicos de X y P.

Solución Apliquemos el Teorema de Menelao al $\triangle ABC$ y la recta YP



$$\frac{AZ}{ZB} = \frac{BP}{PC} = \frac{CY}{YA} = 1 \tag{13}$$

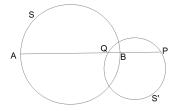
Luego, como Z, Y y X son puntos de tangencia con el incírculo, se sabe que AZ = AY, ZB = BX y CY = CX. Si sustituimos esto en la ecuación anterior y simplificamos obtenemos:

$$\frac{BX}{XC} = \frac{BP}{PC} \tag{14}$$

Lo que indica que B y C son conjugados armónicos de X y P.

7. Sea S una circunferencia y P un punto. Hallar el lugar geométrico de los centros de las circunferencias ortogonales a S que pasan por P.

Solución Tracemos la recta que pasa por P y por el centro de S. Esta recta corta a la circunferencia S en A y B. Consideremos una circunferencia ortogonal a S llamada S' que pasa por P. Como ya vimos, si esta nueva circunferencia corta a la recta AP en Q, entonces Q y P son los conjugados armónicos de A y B.



Como $A, B \ y \ P$ son fijos, Q también lo es. Es decir que si las circunferencias son ortogonales, S' pasa por Q y si S' pasa por Q entonces las circunferencias son ortogonales. Entonces el problema se reduce a encontrar el lugar geométrico de los centros de las circunferencias que pasen por P y Q. Se sabe que este lugar geométrico es la mediatriz de P y Q. Por lo tanto, el lugar geométrico de los centros de circunferencias ortogonales a S que pasen por P es la mediatriz de P y Q.

3 Problemas Propuestos

- 1. Dados 4 puntos ordenados A, C, B y D sobre una recta, demostrar que si $OC \cdot OD = OA^2$ con O el punto medio de \overline{AB} entonces A, C, B y D forman una cuarteta armónica.
- 2. Demostrar que en un triángulo, los puntos de corte de las bisectrices interna y externa de un ángulo con el lado opuesto son conjugados armónicos de los vértices que forman dicho lado .
- 3. Sean l_1, l_2, l_3 y l_4 cuatro rectas ordenadas que concurren en un punto O. Un segmento XY paralelo a l_1 , con X en l_2 y Y en l_4 corta a l_3 en B, el punto medio de XY. Se traza una recta por B que corta a l_1, l_2 y l_4 en A, C y D respectivamente. Demostrar que A, C, B y D forman una cuarteta armónica.
- 4. Dados tres puntos ordenados A, C y B sobre una recta, construir el punto D tal que formen una cuarteta armónica.
- 5. En un $\triangle ABC$ se traza por A una recta l paralela a BC. Demostrar que l, AB, AA' y AC forman un haz armónico, donde A' es el punto medio de BC.
- 6. Sea ABC un triángulo y AX, BY y CZ tres cevianas concurrentes. Sea P la intersección de YZ con la extensión del lado BC. Demostrar que P, B, X y C son una cuarteta armónica.
- 7. Sea AB un segmento y sean M y N los puntos sobre la recta AB con M interior y N exterior al segmento AB, que parten al segmento en una razón dada k, es decir, $\frac{AM}{BM} = \frac{AN}{BN} = k$. Sea P un punto de la circunferencia con diámetro MN. Demostrar que

$$\frac{AP}{BP} = k \tag{15}$$

- 8. Dados una recta l y dos puntos A y B en lados opuestos de l, demostrar que existe un único punto P sobre l tal que el ángulo APB es bisecado por la recta l. (Sugerencia: trazar la perpendicular a l que pasa por P).
- 9. En un $\triangle ABC$, sean H_a el pie de la altura desde A y A' el punto medio de BC. Por A' se trazan rectas paralelas a AB y AC, que cortan a AH_a en en P y Q respectivamente. Demostrar que A y H_a son conjugados armónicos de P y Q.

4 Soluciones a los Problemas Propuestos

- 1. Consideremos un punto D' en la recta AD tal que A, C, B y D' formen una cuarteta armónica. Ya demostramos que $OA^2 = OC \cdot OD'$, pero también sabemos, por el dato del problema, que $OA^2 = OC \cdot OD$. Entonces, OD = OD' y como D' es externo al segmento AC y está del mismo lado, llegamos a que D y D' son el mismo punto y por lo tanto A, C, B y D forman una cuarteta armónica.
- 2. Sean P y Q los puntos de corte de las bisectrices internas y externas del $\angle A$ con el lado BC. Sabemos que:

$$\frac{BP}{CP} = \frac{c}{b} = \frac{BQ}{CQ} \tag{16}$$

de donde B, P, C y Q son conjugados armónicos.

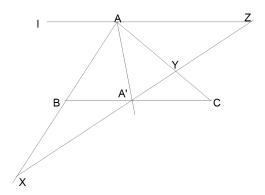
3. Sabemos que XB = BY y XY es paralelo a l_1 . Como $\triangle OAC \sim \triangle XCB$ y $\triangle OAD \sim \triangle YBD$, se tiene que

$$\frac{OA}{XB} = \frac{AC}{BC} \quad y \quad \frac{OA}{YB} = \frac{AD}{BD} \tag{17}$$

Y como XB = YB, concluimos que

$$\frac{AC}{BC} = \frac{AD}{BD} \tag{18}$$

- 4. Consideremos un punto cualquiera O fuera de la recta de A, C y B y tracemos OA y OC. Luego tracemos una paralela a OA que pase por B y corte a OC en P. Tracemos la recta BP y encontremos el punto Q sobre ella tal que PB = BQ. Finalmente tracemos la recta OQ que corta la recta original en D, el punto buscado. Por lo visto anteriormente, C y D son conjugados armónicos de A y B.
- 5. Tracemos una recta que pase por A' y corta a AB, AC y l en X, Y y Z respectivamente. Luego, como BC es paralelo a l y BA' = A'C, se tiene que X y Y son conjugados armónicos de A' y Z. Por lo tanto, AX, AA', AY y AZ forman un haz armónico.



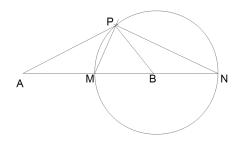
6. Por los Teoremas de Ceva y Menelao tenemos que

$$\frac{AZ}{ZB} \cdot \frac{BX}{XC} \cdot \frac{CY}{YA} = 1 \quad \frac{AZ}{ZB} \cdot \frac{BP}{PC} \cdot \frac{CY}{YA} = 1 \tag{19}$$

Igualando las ecuaciones anteriores obtenemos $\frac{BX}{XC}=\frac{BP}{PC}$ y reordenando obtenemos que $P,\,B,\,X$ y C son una cuaterna armónica.

$$\frac{BP}{BX} = \frac{PC}{XC} \tag{20}$$

7. Como podemos ver en el enunciado del problema, los puntos N, A, M y B son una cuaterna armónica. Entonces, las rectas PN, PA, PM y PB forman un haz armónico.



Ahora bien, el ángulo MPN es recto porque circunscribe el diámetro MN. Esto quiere decir que PM y PN son las bisectrices internas y externas respectivamente del ángulo APB. Luego, por el Teorema de la Bisectriz, se tiene que

$$\frac{AP}{BP} = \frac{AM}{BM} = k \tag{21}$$

- 8. Sea P un punto sobre la recta que cumple la condición del enunciado. La perpendicular a l por P corta a la recta AB en D, y la recta AB corta a l en C. PC y PD son entonces las bisectrices internas y externas de $\angle APB$ y por lo tanto, las rectas PA, PC, PB y PD forman un haz armónico. Es decir, A, C, B y D son una cuaterna armónica. Como A, C y B son únicos, también lo será D y en consecuencia P.
- 9. Por la semejanza de los triángulos PH_aA' y AH_aB , tenemos

$$\frac{AH_a}{H_aP} = \frac{BH_a}{H_aA'} \tag{22}$$

Sumando 1 a ambos lados de esta expresión, obtenemos

$$\frac{AH_a + H_aP}{H_aP} = \frac{BH_a + H_aA'}{H_aA'} \tag{23}$$

es decir,

$$\frac{AP}{H_aP} = \frac{BA'}{H_aA'} \tag{24}$$

De la misma forma, por la semejanza de los triángulos QH_aA' y AH_aC , obtenemos la expresión

$$\frac{AQ}{H_aQ} = \frac{CA'}{H_aA'} \tag{25}$$

Pero BA' = CA', de donde

$$\frac{AQ}{H_aQ} = \frac{AP}{H_aP} \tag{26}$$

Es decir, los puntos P y Q son conjugados armónicos de A y H_a , como queríamos.