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Principio de induccion

La induccién matematica es un método de demostracién extremadamente util. Se emplea
generalmente al probar férmulas o propiedades de los numeros naturales, algunas que se
pueden extender a los niUmeros reales con ciertas restricciones —por ejemplo, leyes de los
exponentes con base real pero exponente entero. Parte de la bondad de la induccidn
matematica es que la usamos cuando ya sabemos qué queremos demostrar y lo Unico que
nos falta es un argumento para poder asegurar que es cierto.

Los numeros naturales se definen de manera inductiva. Es decir, incluso hablando muy
informalmente, al describir los nimeros naturales no podemos nombrar a todos los
numeros naturales puesto que son infinitos, lo que hacemos normalmente es decir algo
como “1 es un numero natural, también 2 y 3 y 4 y asi te sigues, si le sumas 1 a un nimero
natural te da otro ndmero natural”. Es mas, los nifios normalmente se pelean de manera
inductiva: “Tu tienes cara de popd”, “No, tu tienes mads cara de popd”, “Td uno mas que yo
para siempre”. Ese “uno mas para siempre” es un argumento intuitivo indestructible: no
importa qué tan grande pienses tu numero, “uno mas” es siempre mas grande.

Esos son precisamente los Axiomas de Peano?, la manera en que definimos los nimeros
naturales:

a. 1esun numero natural.
b. sinesun numero natural, entonces n + 1 también es nUmero natural.

En el caso (b), suponemos la existencia de algin nimero que cumple la propiedad de ser
natural. Nuestra hipdtesis no es descabellada, pues a partir de (a) sabemos que existe al
menos un numero natural, el 1. La manera de construir los nimeros naturales no es tan
distinta de la manera en que aprendemos a contar: lo Unico que necesitamos es
preguntarnos por el siguiente numero porque debe haber un siguiente nimero, ¢no es asi?

El principio de induccidn es usar esta definicion para probar cosas. También, estd muy
relacionado con las definiciones recursivas de ciertas formulas o sucesiones. Podemos
definirlo de varias maneras:

I. SiAesunsubconjunto de los nimeros naturales tal que:

a. 1lpertenecea A

1 Guiseppe Peano fue un matemaético italiano —aunque cuando naci6, en 1858, todavia no existia Italia
propiamente dicha. Trabajé muchos afios ligado a la Universidad de Turin.
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b. sin pertenece a A, entonces n + 1 pertenece a A
Entonces A contiene a todos los naturales.

II. Si una propiedad P de un subconjunto de los nimeros naturales cumple
que:

a. Pesciertaparaly
b. si P es cierta para n, entonces P es cierta paran + 1.
Entonces P es cierta para todos los naturales.

Estas definiciones son equivalentes. Es mds, adelante vamos a ver que este principio puede
modificarse ligeramente: el caso base no tiene que ser necesariamente 1, por ejemplo. La
idea es la misma: si la verdad de n + 1 depende Unicamente de la verdad de n —o, en el
caso de la induccidn fuerte, de la verdad de todos los anteriores—, entonces que exista
uno solo cuya verdad es demostrable de manera directa implica la verdad de todos los
siguientes.

Analogia de los dominés

Imaginemos que tenemos un montédn mucho muy grande —potencialmente infinito— de
dominds puesto en una especie de fila. La pregunta es: ¢qué necesitamos para tirarlos a
todos? El hecho de que sea una cantidad quizas infinita de dominds nos dice que es una
muy mala idea intentar tirarlos uno por uno: no importa cuantos tiremos, nuestro avance
no es realmente importante.

Si ponemos todos nuestros dominds parados en una fila, necesitamos sélo asegurarnos de
dos cosas para que se caigan todos:

a) Que exista al menos un domind que se caiga.
b) Que si un domind cae, empuje al siguiente.

Para la primera parte, no tiene que ser el primer dominé. Si tiramos el primero, queremos
gue se caigan todos; pero si tiramos el segundo o el tercero o el quinto, queremos que se
caigan todos después el que tiramos.

Para la segunda parte tenemos que asegurarnos que la distancia entre cada dos dominds
no sea demasiada o que estén en el angulo correcto, porque si uno solo no empuja al que
sigue, entonces no se van a caer todos.



Los numeros naturales son como un conjunto infinito pero ordenado de dominds, donde
cada domind tiene escrito un numero. Las pruebas por induccién son como ordenar
nuestros dominds parados en una fila y ver si es posible empujar alguno para que se caigan
todos.

a) El caso base es asegurarse de que exista un primer domind que se caiga.

b) El paso inductivo es suponer que si cumple para algun entero, cumple para el
siguiente. Como sabemos que cumple para el caso base, entonces cumple para
el siguiente; como cumple para el siguiente, cumple a su vez para su siguiente y
asi sucesivamente cumplen todos los enteros a partir del caso base.

Esos dos pasos nos aseguran que se caen todos los dominds sin necesidad de verlos caer?.

Para “explicar” la induccién, vamos a ver cdmo funciona. Estudiamos un ejercicio clasico
para el tema: la formula de Gauss.

Suma de los primeros naturales

Existe una fdrmula que usamos para sumar los primeros n naturales que es

nn+1)
2

1+2+3+..+n=

y que conocemos coloquialmente como Formula de Gauss como parte de la mitologia
matematica que rodea esta formula con una anécdota del matematico Carl Friedrich
Gauss, el principe de los matemadticos, cuando era solo un pequefio alumno de primaria.

Podemos ver que esta férmula funciona para los primeros enteros, por ejemplo:

2 Muchos autores trabajan con tres pasos: el caso base, la hipétesis de induccién y el paso inductivo. A
nosotros nos gusta entenderlo Gnicamente como dos pasos porque la hipétesis no es relevante hasta que
se usa, es decir, hasta que pasamos al paso inductivo.
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n suma formula

1 1 1(2)/2 =1
2 1+42=3 2(3)/2=3
3 1+42+3=6 3(4)/2=6
4 1+42+3+4=10 4(5)/2=10
5 1+2+3+4+5=15 5(6)/2 =15
6 1+42+3+4+5+6=21 6(7)/2 =21
7 1+2+3+4+5+6+7=28 7(8)/2 =28
8 1+2+3+4+5+6+7+8=36 8(9)/2 = 36
9 1+2+3+4+5+6+7+8+9=45 9(10)/2 =45
10 1+2+3+4+5+6+7+8+9+10=55 10(11)/2 =55

En la tabla anterior vemos que la suma y la formula coinciden en los primeros diez valores.
Si lo hiciéramos para los siguientes valores, éseguirda coincidiendo? ¢Cuantos valores
debemos probar para asegurarnos que la férmula es siempre cierta?

La cosa es que, dado que los naturales son infinitos, cualquier avance, por grande que sea,
es insignificante pues infinito menos cualquier natural sigue siendo infinito. Sin embargo,
haciendo muchos casos puede surgir la intuicion de que, dado que ha sido cierto para
todos hasta ahora, seguird siendo cierto para los demas. Es decir, aqui es cuando entra la
Induccion.

Ya demostramos que cumple para algunos naturales, eso es nuestro caso base. Ahora,
suponemos que existe algln natural k para el cual es cierto. Esta hipdtesis no es del todo
infundada pues ya encontramos muchos valores para el cual es cierto. Sin embargo, lo que
estamos diciendo es que para nuestro natural k se cumple que

k(k+1)
2

1+2+3+..+k=

Sin embargo, es una suposicién. Estamos suponiendo que existe alglin natural k para el
cual eso es cierto. Ahora, como eso es cierto —por hipdtesis— entonces debe ser cierto
que

k(k+1)

14243+ +k+(k+1)= +(k+1)
y, haciendo algo de algebra, obtenemos
k(k2+1)+(k+1): k(k+1);—2(k+1) _ (k+1)2(k+2)



gue es exactamente la misma férmula pero para n = k + 1, es decir, para el siguiente valor.
Esto quiere decir que si es cierto para algun ndmero, también debe ser cierto para el
siguiente y eso es el principio inductivo.

Luego, como al menos es cierto para los numeros del 1 al 10, y si es cierto para algun
nimero también lo es para su siguiente, entonces es cierto para todos y eso concluye la
prueba.

Suma de impares

Vamos a demostrar que

14345+749+..+Q2n-D=n’

es decir, que la suma de los primeros n impares es igual a n”. Para convencernos de esta
idea, veamos que es cierto para los primeros casos:

Paran=1, 1=1°.

Paran=2, 1+3=4=2°.
Paran=3, 1+3+5=9=3".
Paran=4, 1+3+5+7=16=4".
Paran=>5, 14+3+5+7+9=25=5".

Creemos que ya nos convencimos lo suficiente. Ahora, suponemos que existe un natural k
tal que 1+3+5+..+(2k—1)=k’ vy, usando esa hipdtesis, queremos calcular cuanto vale
1+3+5+..+R2k-D+2k+D-1).

143454+ Q2k=D+Qk+1) =)=k + 2k +1) =)= k> + 2k +1= (k+1)

gue es exactamente lo que queriamos. Esto concluye la induccion y la demostracion.



Otro, otro

Es probable que ya conocieras los dos resultados anteriores. Eso no quiere decir que la
Induccion Unicamente sirva para demostrar lo que ya sabes. La relacién que queremos
probar ahora es

12)+23)+ 3(4)+...+n(n+1)=%(n+2).
Veamos que cumple para algunos casos:
Paran=1, 2=112)= 1(2;(3) =2.
Paran=2,8=2+6=112)+2(3)= 2(3)(4)=8.
Ahora, sabiendo que 1(2)+2(3)+3(4)+...+ k(k+1)= w , veamos que
12)+2(3)+...+ k(k+1)+(k+1)(k+2):Wﬂkﬂ)(lwm
_ (k+1D)(k+2)(k+3)

k
—(k+1)(k+2){§+1} 3

que es la férmula para k+1. Esto concluye la demostracion por induccion.

Uno de divisibilidad

También podemos usar la Induccién Matematica para demostrar afirmaciones sobre la
divisibilidad de nimeros naturales, cuando dichas afirmaciones hablan de propiedades de
los naturales como conjunto completo.

Queremos demostrar que n(n”+35) es divisible entre 6 para todo n natural. Veamos si

cumple para los primeros naturales:

Para n=1, tenemos 1(I°+5)=6 que es multiplo de 6.
Para n=2, tenemos 2(2°+5)=2(9)=18 que es mdltiplo de 6.
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Para n=3, tenemos 3(3*+5)=3(14)=42 que es multiplo de 6.

Y con esos basta para convencernos de que no es una afirmacién tan descabellada. Ahora,
exploraremos la afirmacién para n+1 para ver si es posible que su veracidad dependa
Unicamente de la verdad de la misma afirmacion pero para n.

Veamos que
(+D[(n+17 +5 =+ D[ n* +2n+1+5 |= (n+ D[ (0 +5)+2n+1) ]

y lo separamos de esa manera para poder reducirlo a casos anteriores. Desarrollando la
multiplicacién tenemos

n(n*+5)+nC2n+1)+n’+2n+6.
Ademas,
nn+1)+n’>+2n=3n"+3n=3(n"+n).

Si a un multiplo de 6 le quitamos o agregamos multiplos de 6, el resultado sigue siendo un

multiplo de 6. Claramente 6 es multiplo de 6. Ademas, 3(n” +n) siempre es multiplo de 6
porque n’+n siempre es pard. Luego, (n+1)[(n+1)2+5] es multiplo de 6 si y solo si
n(n® +5) es multiplo de 6.

La condicidn anterior es equivalente al paso inductivo pues demostramos que si es cierto
para alguno, también debe ser cierto para el siguiente. Esto concluye la prueba.

Induccion fuerte con divisibilidad

Vamos a saltar de un ejercicio de divisibilidad relativamente sencillo como el anterior a uno
mucho mas general. Sin embargo, las ideas son siempre las mismas; si acaso, para
problemas de divisibilidad usamos la idea de que, si tenemos un multiplo de n, sumary
restar multiplos de n sigue siendo un multiplo de n.

Queremos demostrar que x—y es un factor de x"—y" para todo n natural. Para los

primeros casos es sencillo de ver.

3 Estamos haciendo trampa. Esa afirmacién se puede verificar facilmente probando los casos par e
impar. Sin embargo, ese tipo de idea es el de una demostracion directa. Esta afirmacién también se
puede demostrar usando Induccién Matematica pero no nos queremos detener en eso ahora; en la
siguiente seccidén tendremos una demostracion por Induccién que si incluye la demostracién de una

afirmacion similar usando Induccion.
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Para n=1, esclaro que x—y esfactorde x—y.

Para n=2, tenemos que x’—y* =(x+ y)(x—y) de donde vemos que x—y es factor.

Ahora, supongamos que existe un entero k para el cual es cierto que x—y es factor de
x*—y*. Luego, como x*—y* es multiplo de x—y, tanto x(x*—y*) como y(x*—y")
también lo son. Si sumamos estos dos numeros obtenemos

s _xyk +yxk _yk+l

que también es multiplo de x—y. Luego, x*"' —y**' serfa multiplo de x—y siy solo si
yx* — xy* también lo es. Vamos a centrarnos en demostrar esto ultimo. Veamos que
k k k— k—
yxt = xyt = ay(x =y

por lo que acabariamos si x*"' —y"™" fuera mdltiplo de x—y. En estos casos, usamos lo

gue se llama Induccidn Fuerte, que consiste en suponer no solo que el caso para k es cierto
sino también todos los casos desde 1 hasta k. El principio de Induccidon Fuerte es
equivalente a la Induccién comun y corriente como la hemos manejado.

Afortunadamente, en este caso, usar Induccién Fuerte en este ejemplo nos permite
concluir la prueba con lo que tenemos. Es decir, suponiendo que es cierto para todos los
valores desde 1 hasta k implica que es cierto para k + 1. Luego, como encontramos que es
cierto para 1 —y también, aunque no es necesario, encontramos que es cierto para 2—,
concluimos que es cierto para todos.

El caso base no siempreesel 1

De todo lo que podria salir mal en una induccién, esto es lo menos preocupante. Es una
sencilla leccién en perseverancia y confiar en tus instintos. Lo primero que tenemos que
encontrar es nuestro caso base.

Queremos demostrar que 2" <n!para toda n. Procedemos por induccion. Naturalmente,
lo primero que debemos hacer es encontrar un caso base.

Sin=1,2'=2>1=1!
Sin=2,2"=4>2=2!
Sin=3,2'=8>6=3!
Sin=4,2"=16<24=4!
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Vamos a tomar 4 como nuestro caso base porque es el primer natural que cumple. Aunque
tardamos en encontrar un caso base, nuestra intuicidon nos diria que la que la proposicién
es verdadera pues del lado menor estoy multiplicando puros factores 2, del lado mayor
multiplico factores crecientes.

Asi pues, lo que queremos demostrar ahora es que 2" <n! para n>4.

Como ya encontramos el caso base, sigue el paso inductivo, es decir, demostrar que
2 < (k+1)! si sabemos que 2* <k!. Este paso inductivo lo podemos hacer de muchas

maneras distintas, todas igual de validas si tenemos cuidado en los detalles. Veamos dos
de estas maneras. La primera seria:

2 < (k+1)! =225 < (k+ k!

=2<ka2b<k!

donde 2 < k es cierto por la condicién del problemay 2* < k! es cierto por hipétesis. Es
muy importante notar que no conocemos la verdad del signo “<“ al principio del
enunciado, pero que el signo de si y solo si hace que no sea problema. El signo al final no
es el “solo si” sino el “si”.

Segunda manera:

28 <k!=2(2%) < 2(k!)
= 2" < 2(k)) < (k+1)(k!)
S2<k+1

gue es esencialmente la misma manera anterior excepto que esta parte de la hipdtesis de
induccion para llegar a aquello que queremos demostrar en lugar de partir de lo que
gueremos demostrar para ver que depende Unicamente de la hipdtesis de induccidon, como
hicimos en la primera manera.

Lo que hicimos fue demostrar que la desigualdad es cierta para todos los naturales a partir
del 4. Este es un caso de Induccién Incompleta pues el conjunto para el cual es vélida la
afirmacion no es igual al conjunto de todos los naturales.

MA — MG

La induccidn se limita a propiedades de los nimeros naturales. Asi, no podemos usar
induccidon para demostrar la desigualdad de la Media Geométrica — Media Aritmética
pero si podemos usarla para demostrar que es valida para cualquier cantidad de términos.
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La desigualdad de la Media Aritmética — Media Geométrica dice que, para cualesquiera
X,,X,,X5,...,X, reales positivos, se cumple que

XX, +x,+.+X
1 2 3 n
> 1/x,%,x,7x,

n

Nuestro caso base serd n=2 pues el caso n=1 no tiene ningun chiste. Veamos
efectivamente que, para cualesquiera dos reales positivos x,y tenemos que

+ P+ 2xy+y’
XZYZ\/E@%ZW

S X +2xy+y 2dxy o X —2xy+y =(x—y) =0

gue es siempre cierto pues todo cuadrado es no negativo.

Vamos a suponer que la desigualdad MA—MG es cierta para n — 1 elementos y usaremos

eso para demostrar que es cierto para n elementos. Sean 4,,a,,d;,...,d,_,,d, numeros

reales positivos y sea G=(/a1a2a3---a @, su media geométrica. Sin pérdida de

n— n

generalidad, supongamos que g, <a, <---<a,.Sabemos que ¢, <G <a, .
Antes del paso inductivo, probaremos que

44, +G.
G

a+ta,2

Efectivamente, veamos que

a,

aa a
a+a,-G-—>=-"(G-a,)+(a,-G)=(a,-G [——+1}
1 n G G( n) ( n ) ( n ) G
simplificando, nos queda
1
E(an -G)G—-a))
1
gue es no negativo pues G>O:>E>O y como a,=2G =aqa,, las dos restas son no

negativas.

Ahora si, por hipdtesis de induccion, la desigualdad MA—MG es cierta para cualquier
conjunto de n — 1 elementos. En particular,

a,a
a,+a;+--+a, +

G anlG_n:G
n—1 VG
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es decir,

aa
a+a,++a, +—=22n-1)G .
Sumando G de ambos lados, obtenemos
a,a
a,+a,++a, +—=+G=2nG

y, usando la desigualdad que demostramos antes,
alan
a,‘a;+---+a, +a,+a,2a,+a,+---+a,, +?+G2nG

gue implica inmediatamente

a+a,++a, +a,

n

=G

gue es lo que queriamos demostrar.

Seguro puedes apreciar, en esta Ultima demostracién, que no utilizamos Unicamente la
induccion. Es decir, la induccion fue sencilla Unicamente después de demostrar cierta
desigualdad muy atil que parece sacada de la nada.

La induccion matematica es una herramienta que revisamos dentro de los contenidos de
Olimpiada de Matematicas —normalmente en el drea de Combinatoria, pero en realidad
es util en cualquier otra— que, sin embargo, se extiende a las herramientas basicas del
matematico profesional y se revisa en al menos un curso basico de la Licenciatura. Por muy
complicado que pueda parecer, es una herramienta sencilla que es necesario dominar.

A partir de aqui, empezaremos a mostrar cémo usar la induccién matematica en distintos
contextos. Analizaremos sus ventajas y también los aspectos con los que hay que tener
cuidado. Por ultimo, un par de problemas de otro tipo —mads cercano a la Olimpiada,
distintos a formulas y divisibilidad— que muestran un poco mas del poder de la induccién.
Al final, una enorme lista de ejercicios y problemas.
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El l1ado bueno de 1a induccion

Empezamos por mostrar las ventajas de la induccidon que saltan a la vista. Una de ellas es
clara: reduce el trabajo de “pensar”. La Induccidon nos ayuda a demostrar que relaciones
gue creemos que son verdaderas son, efectivamente, verdaderas. Asi, es una excelente
herramienta para demostrar nuestras corazonadas, intuiciones y conjeturas. Es decir, eso
gue crees que es cierto porque ha funcionado para todos los nimeros que has intentado
demuéstralo con induccién.

El caso que vamos a estudiar primero es el de la suma de los cuadrados de los numeros
naturales. Esa relacién estd dada por

P+2°+3%+. 40" = n(n+1)6(2n+1)

Tuvieron que pasar afios y algunos matematicos brillantes antes de tener una prueba no
inductiva de esta férmula. Por supuesto, la prueba por induccion es igual de valida.

Sin usar induccion

Que es lo que queriamos demostrar. En esta demostracién no sélo demostramos la validez
de la féormula, ademas la construimos. Este tipo de prueba se llama prueba directa. La
enorme diferencia con la prueba por induccidén es que esta prueba funciona incluso si no
supiéramos a qué queremos llegar y, en ese sentido, es mas “fuerte” que una
demostracién por induccion. Mientras que la induccion nos puede ayudar a demostrar una
féormula andloga para cubos, una prueba analoga a ésta nos ayudaria a encontrar una
féormula para cuartas o quintas potencias.

La idea de esta prueba es observar que (k+1)° -k’ =k’ +3k> +3k+1-k’ =3k>+ 3k +1.

Hacemos esto para los primeros n enteros:
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2° -1’ =31)+3(1)+1

3} -2° =302 +3(2)+1
4* -3 =33 +3(3)+1
5°—4°=3(4)" +3(4)+1

n—m-1Y=3m-1+3n-1)+1
(n+1)’-n*=3n"+3n+1

Si sumamos todos los términos del lado izquierdo, podemos ver que todos los términos se
cancelan. Por ejemplo: el 2 del primer rengldn se cancela con el 2 del segundo renglén, el 3
del segundo rengldén se cancela con el 3 del tercer rengldn, etcétera. Asi, todos se cancelan

excepto (n+1)° del dltimo renglén y —1 del primer renglén. Del lado derecho, todo se

puede sumar sin problemas y, todavia mas, podemos tomar el 3 como término semejante.
(n+1Y° —1=31"+2>+3+..+n°)+3(1+2+3+..4n)+n

De donde el ultimo término es n porque estamos sumando n veces 1. Ahora, recordemos
nn+1)

gue, como vimos en la seccién anterior, 1+2+3+..+n= . También, ya tenemos

en la expresién anterior la suma que queremos, por lo que es conveniente despejarla de la

ecuacién. Por facilidad de notacién, vamos a decir que I’+2°+3*+.+n°=S. la
expresion, antes de despejar, nos queda como

1
(n+1)y —1=35+321FD
Y, despejando para S, nos queda
(n+1y —1-3"1FD_,
S=
3

que se ve medio feo pero podemos acomodar. Fijate que —1—n=—(n+1) y que tenemos

ese término comun en todas las expresiones. Nos queda

(n+1)|:(n+1)2_3n_1:| (n+1){2(” +2n+1)—3n—2:|
S= 2 J_ 2
3 3

_@+D[20’+n] p(n+D@n+1)
6 6
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gue es justo lo que buscdbamos. Hemos llegado a que, para cualquier n dado,

P+22+3%+.4n° = n(n+1)6(2n+1)

Aunque la prueba en si no es muy complicada, cuando uno ve esta demostracién por
primera vez es probable que necesite leerla varias veces para entender qué pasd. El
detalle, como hemos mencionado, es que para crear esta prueba, uno tiene que tener
ideas. Eso es distinto con la induccién pues uno ya sabe a qué quiere llegar y ya sabe qué
tiene que hacer.

Usando Induccion

Vamos a probar la misma relacion, esta vez usando induccidn. Es necesario ver primero
gue cumple para algunos casos. Vamos a hacer los primeros cuatro, aunque bastaria con
uno:

I.

Para n=1, tenemos I°’=1y 10+ HEM+D1)3) _

6 6

22+D2Q@)+1) _2(3)(5) _
6 6

Para n=2,tenemos 1’+2°=14+4=5y 5.

Para n=3,tenemos I’ +2°+3’ =1+4+9=14 y 3(3+1)(62(3)+1): 3(46)(7):14.
Para n=4, tenemos P+2°+3%4+4°=1+4+9+16=40 y
44+DR24)+1) _ 4(5)(9) =30

6 6 '

Ya tenemos evidencia de que la relacion parece funcionar. Entonces, suponemos que existe
un natural k para el cual

_ k(k+1)(2k+1)
6

P+22+3 +..+k’

y, usando eso, queremos calcular cuanto vale 1> +2° + 3>+ ..+ k* + (k+1)*. Veamos que

k(k+1D)(2k+1)

P42 434+ 4+ +(k+1)’ = +(k+1).
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Hemos usado ya nuestra hipétesis de induccion de modo que lo que sigue es simplificar
para obtener la expresidn que queremos.

k(k+1)(2k +1)
6

Fht 1) :(k+1)[k(2k+1)+6(k+1)}

6

Ahora, veamos que

kQk+1)+6(k+1)=2k>+k+6k+6
=2k +4k)+(Bk+6)=2k(k+2)+3(k+2)=(k+2)2k+3)
De donde

(k+1)(k+2)2k+3)
6

P+22+3+. . 4+(k+1)’ =

gue es lo que queriamos obtener. Esto concluye la prueba por induccién. Demostramos
gue si se cumple para algin numero, debe cumplirse para el siguiente y, ademas, que se
cumple para los primeros cuatro. Luego, debe cumplirse para todos.

La intencidn de mostrar las dos pruebas es mostrar cdmo las pruebas por induccion
pueden ser mucho mas sencillas que una prueba directa. La prueba por induccidén necesitod
de sdlo una sustitucion y un par de manipulaciones algebraicas, mientras que la prueba
directa no sdélo necesitdé algunas sustituciones mds y la misma necesidad de
manipulaciones algebraicas, ademas partié de una idea que es sencillamente brillante. Es
decir: la demostracién por induccidon la pudimos haber hecho nosotros solos sin problema,
la prueba directa necesitamos que alguien nos platicara la idea inicial.

III

¢Cual es mas sencilla? Tu lo decides. Ahora que sabes cudl es esa “idea genial” de la que
hablamos, seguro puedes usarla para otras féormulas similares. Lo que hemos llamado “el
lado bueno de la induccién” lo resumimos en un par de puntos: (1) con la induccidon ya
sabes qué quieres demostrar, (2) con la induccion ya sabes qué tienes que hacer. Juntos,
saber qué quiero demostrar y saber qué tengo que hacer para demostrarlo pueden hacer
gue la prueba sea muy sencilla.
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El lado oscuro de 1a induccion

Por muy poderosa que parezca, la induccion no es infalible ni su aplicacidén es tan mecanica
como los ejercicios revisados nos podrian hacer creer. Empezamos tratando de mostrar
puntos mas o menos sencillos de superar: lo que sucede cuando se cumple el paso
inductivo pero no encontramos caso base; de cuando la induccién no es el camino mas
sencillo a la solucién; de cdmo una induccidn, incluso si es el camino adecuado, puede
requerir mucho trabajo; lo que sucede cuando hay muchos ejemplos que cumplen pero el
paso inductivo es esencialmente imposible.

Por supuesto, no pretendemos alejarte de la idea de que la Induccidén es una herramienta
sumamente fuerte y Util porque lo es. Pero si queremos que tengas cuidado: con gran
poder viene gran responsabilidad.

No hay caso base

Queremos demostrar que n=n+1 para todo n natural. Si, exactamente eso que acabas de
leer: queremos demostrar que cada nimero es igual a su siguiente que, naturalmente,
implicaria que todos los naturales son iguales.

Sin embargo, vamos a cambiar el orden en el que hacemos la demostracion sencillamente
para agregar algo de suspenso. Vamos a realizar primero el paso inductivo: probar que si
cumple para un entero k, entonces cumple para el entero k + 1.

Queremos demostrar que k+1=k+2 sabiendo que k=k+1. Puesto que 1=1 se sigue
de las propiedades de la igualdad como relacion de equivalencia, no tenemos problema en
afirmar que

k=k+1=k+1=k+1+1=k+2
gue es lo que queriamos demostrar.

Acabamos de mostrar que si existe algun entero que cumple, entonces todos los enteros
después de ese también cumplen. Es decir, si un solo nimero fuera igual al siguiente,
todos serian iguales entre si.

Dado que x=x vy, por las propiedades de la igualdad, podemos ver que lo que encontrar
un numero que satisfaga lo anterior es equivalente a demostrar que
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x=x+10=1
lo que sabemos es falso.

Queremos enfatizar el cuidado que se tiene que tener con la induccién: hemos probado
gue si un domind se cae, sin duda empujara a todos los demas; el detalle es que no existe
un solo dominé que se caiga.

El camino mas corto

Cuando trabajamos sobre el lado mas amable de la inducciéon, vimos cémo la prueba por
induccion puede hacer que ciertas pruebas directas se vean como exageradamente
complicadas y largas. Sin embargo, esto depende de cada problema. Lo que queremos ver
ahora es que un problema que puede resolverse de maneras bastante sencillas y directas
con otros métodos y argumentos, usando induccion se vuelve un camino largo.

3 . 3
Queremos demostrar que n° —n==6k para todo n natural, es decir, que n°—n es un
multiplo de 6 para todos los valores de n naturales.

Para proceder por induccién, debemos primero encontrar un caso base. Es claro que con 1
cumple pues 1 — 1 = 0 que es multiplo de 6. Ahora, queremos demostrar que si n° —n es

un multiplo de 6, entonces (n+1)’ —(n+1) también lo es.
(n+1)’—(n+D)=6k=n’+3n*+3n+1-n—-1=6k

Usando la hipétesis de induccién, como n’+3n*+3n+1—n—1=n’-n)+3n"+3n, lo

anterior es mdltiplo de 6 si y solo si 3n°+3ntambién es multiplo de 6. ¢Cémo
demostramos eso? Bueno, pues haciendo una segunda induccion —una induccién adentro
de una induccioén.

No siendo tan estrictos, podemos ver que claramente 3n° +3n es multiplo de 3, de modo

que para asegurar que es multiplo de 6 bastaria con demostrar que n”>+n es un nimero
par. Esa sera la afirmacion que queremos probar usando induccidn.

Es claro que 1 + 1 es un numero par asi que 1 es nuestra base de induccién. Ahora,

gueremos demostrar que (n+1)° +(n+1) es un numero par si n*+n loes.
n+1)’+m+D=n’+2n+1+n+l=n"+n+2n+2

. . . .z 2 2
Usando la hipdtesis de induccidén, sabeos que n”+n es par por lo que n"+n+2n+2 es
par siy solo si 2n+2 es par que claramente lo es. Esto concluye la induccién que, a su vez,
concluye la induccion original.
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Si nos hubiésemos decidido por un método mas directo, por ejemplo, usando congruencias
madulo 6, la demostracién se acaba en seis lineas:

0°-0=,0
’-1=,0
2°-2=,8-2=,0
3’-3=,27-3=,0
4°—4=,64-4=,0
5°-5=,125-5=,0

Pues, demostrado para las seis congruencias modulo 6, queda demostrado para todos los

naturales. Esto demuestra que efectivamente n’ —n es multiplo de 6 para todo n.

Sin embargo, una sencilla factorizacion:
n—n=nmn’-1)=m-Dnn+1)

nos deja ver que n’ —n es el producto de tres enteros consecutivos donde al menos uno
es par y otro es multiplo de 3, por lo que el resultado de la multiplicaciéon es
necesariamente multiplo de 6.

Estos dos caminos fueron mucho mas rapidos que la induccidn. Sin embargo, tampoco hay
gue olvidar que la induccién efectivamente demostré el problema que queriamos.

Los limites de la induccion

Hasta ahora, es posible que creas que la induccion, si acaso tiene ciertos detalles a los que
hay que ponerle mucha atencidon, es una herramienta muy poderosa al grado de creer
infalible: todo se puede demostrar con induccidn si pudiéramos plantear la induccién de
manera adecuada. Incluso acotando la anterior afirmacién para incluir Unicamente
propiedades de los nimeros naturales, es necesario entender que la Induccién no es una
herramienta omnipotente. El caso que vamos a estudiar es sobre los numeros primos. Es
mas o menos sabido que no existe una funcidén polindmica o trigonométrica que genere
puros numeros primos. Aunque es claro que existen sucesiones con infinitos nimeros
primos, ninguna sucesién infinita que podamos describir con una férmula —y no, por
ejemplo, diciendo “la sucesion de los nimeros primos”— esta formada Unicamente por
ndmeros primos.

. . N . 2 7 .
Queremos demostrar la siguiente afirmacion: f(n)=n"+n+41 es un niUmero primo para

todo n natural. Ya hemos probado que férmulas similares arrojan puros multiplos de 2 o
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multiplos de 13, por lo que no suena descabellado poder demostrar algo asi usando
induccion.

Para tratar de convencernos —o al menos sorprendernos— acerca de la verdad de la
anterior afirmacién, vamos a hacer una importante cantidad de casos base, muchos mas
gue el Unico caso base que normalmente nos basta encontrar.

fH=1"+1+41=43
f(2)=2"+2+41=47
f(3)=3"+3+41=53
f(A)=4>+4+41=61
f(5)=5"+5+41=171
f(6)=6"+6+41=83
f(H=T"+7+41=97
f(8)=8*+8+41=113
£(9)=9*+9+41=131
f(10)=10*+10+41=151
fAD=11"+11+41=173
f(12)=12"+12+41=197
f(13)=13"+13+41=223
f(14)=14"+14+41=251
f(15)=15"+15+41=281

Hasta ahora® la formula ha arrojado sélo niumeros primos por lo que tenemos —hasta
ahora— algo de evidencia para suponer que quizas pueda ser cierta, ademas de algo de
sorpresa. Como quisiéramos probarla para todos los nimeros, la induccion es una buena
manera de proceder.

. . 2 , .
Usando Induccién, queremos demostrar que si n° +n+41 es un nimero primo, entonces

(n+1)* +(n+1)+41 también es un nimero primo.

Lo que podemos pensar es desarrollar el cuadrado para poder usar nuestra hipdtesis de

induccion. Es decir, si decimos que n+n+4l= P, entonces

n+1)’+m+D+41=n*+2n+1+n+1+41=p+2n+42

¢Qué hacemos ahora? ¢Existe alguna manera de demostrar que esa Ultima expresion es un
primo? Podriamos intentar ver que no es posible factorizarla como producto de dos

4 Diviértete un rato encontrando todos los valores que arrojan un nimero primo, al menos, responde:
¢cual es el primero que no lo hace?
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expresiones distintas de 1. §Cdmo hacemos eso? ¢Es posible hacer eso? Ojalda que no,
puesto que para 41, tenemos f(41)=41%>+41+41 que claramente es multiplo de 41y por

lo tanto no es primo.

Queremos recalcar aqui que la induccién no es todopoderosa. En particular, las
expresiones con numeros primos escapan muy sencillamente de las capacidades de una
prueba por induccién, puesto que los primos no estan todos sobre alguna progresion
aritmética o geométrica conocida —incluso si se conocen varias progresiones que contienen
infinitos primos sobre ellas.

Pensemos nada mads que si la induccién no tuviera limites, problemas como la Conjetura de
Goldbach no habria escapado a su solucidn por casi trescientos afios.
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Ejercicios

Prueba por induccion las siguientes proposiciones. Para algunos de ellos es posible
encontrar una demostracion no inductiva. Todos estos ejercicios son ya sea de formulas,
igualdades o bien, de divisibilidad.

Ejerciciol. 2+4+6+..+2n=n(n+1).

_ n2n-1)(2n+1)

Ejercicio2. I’ +3* +5° +..+(2n—1)’ 3

+ T
Ejercicio 3. 13+23+33+_”+n3:["(n2 )} .

30,2
Ejercicio 4. 1’ +2* +3* +..+n* = n(n+1)(6n 3J(r)9n +n-1)

Ejercicio5. 1+2+4+8+16+..+2"=2""-1.

Ejercicio 6. 1+ x+x"+..+x" =

Ejercicio 7. 8 divide a 3*" —1 paratodo neN.
Ejercicio 8. 35 divide a 6> —1 paratodo neN.

Ejercicio 9. 9 divide a n’ +(n+1)’ +(n+2)’ paratodo neN .
Ejercicio 10. 60 divide a n°(n* —1) paratodo neN.

Ejercicio 11. 17 divide a 2°"" +5"-3"" paratodo neN.

Ejercicio 12. 9 dividea 4" +15n—1 paratodo neN.

Ejercicio 13. 4 +3-4+3-4° +---+3-4" =4"",

Ejercicio 14. Propén y demuestra el resultado de la siguiente suma en términos de n:

1 1 1
—F— -t :
-2 2.3 n(n+1)
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Ejercicio 15. Propdn y demuestra el resultado de la siguiente suma en términos de n:

1 1 n
—+—+-+ :
PARER] (n+1)!

Ejercicio 16. 1(1")+ 22D +---+n(n!)=(m+1)!-1.

Ejercicio 17. (' +2° +---+n" )+ (1" +2" +---+n")=2(14+2+---+n)".

5 4 3
Ejercicio 18. Demuestra que %+%+%—% es un entero para n=0,1,2,...

Ejercicio 19. Demuestra® que

S A U A T L P X

0 1 2 n
Ejercicio 20. Pequeiio Teorema de Fermat. Demuestra que a” —a, donde p es un niumero
primo, es divisible entre p para todo natural a.

5 Una de las demostraciones no-inductivas de esta proposicibn es la que conocemos como “La
hamburguesa de JoséRa”. Consiste en pensar en las maneras en que uno puede ordenar una
hamburguesa en un puesto que ofrece n ingredientes. Por un lado, lo calculamos como la suma de las
maneras de elegir cada cantidad posible de ingredientes; por el otro, lo calculamos usando regla del
producto suponiendo que los ingredientes estan ordenados y que una hamburguesa se define como una
sucesién de Siy NO. Esta demostracion es la prueba no-inductiva del ejercicio anterior.
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La otra induccion

Hasta ahora hemos usado la induccidn para probar esencialmente dos tipos de problemas:
los que llamamos “férmulas”, que son igualdades en sumas grandes que dependen de
alguna variable y cuya verdad demostramos que no depende del valor elegido, vy
problemas de divisibilidad donde queremos mostrar que una expresion dada en funcion de
alguin natural es siempre multiplo de algin numero dado sin importar el valor de la
variable. Lo que queremos hacer ahora es mostrar que la induccién puede ser usada en
otros escenarios, problemas mas “abiertos” donde no estemos usando féormulas y, a veces,
ni siquiera numeros. Lo que quisimos en esta seccién fue recopilar problemas que
necesitaran mas palabras o dibujos que nada mas simplificacién algebraica.

Hay que tener bien claro que la induccién funciona cuando ya tienes una buena idea de
gué quieres demostrar, cuando tienes cierta nocidon o evidencia de que lo que quieres
demostrar es cierto y solo te falta —nada mdas— una manera de probarlo. En esos
problemas, la Induccion Matematica puede ser tu mejor amiga.

Angulos interiores de un poligono

Vamos a demostrar, usando induccién, que la suma de los angulos interiores de un
poligono convexo de n lados es 180(n—2). Algunas de las formas tradicionales de hacerlo

son sumamente directas y parten de un poligono general de n lados que se triangula. Esta
idea no esta demasiado lejos de la manera inductiva.

En la induccidn, necesitamos un caso base. Ese caso es el triangulo —el menor poligono—,
gue necesitariamos demostrar que la suma de sus angulos interiores es

180(n—2)=180(3-2)=180

que es cierto®. Sabiendo eso, queremos demostrar que la suma de los angulos interiores
de un un (n+1)—3agono convexo es 180((n+1)—2), sabiendo que la suma de los dngulos

interiores de un n—agono convexo es 180(n—2).

6 Esto se puede demostrar de muchas maneras aunque necesita los supuestos de que o bien una linea
mide 180 grados, o bien, un circulo mide 360, entre otros postulados de geometria. Esas demostraciones
—y decidir cudl viene primero— no las trataremos aqui.
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Asi, ahora que sabemos que la suma de los angulos interiores de un tridngulo es 180
grados, suponemos que la suma de angulos interiores de un n—agono convexo es
180(n—2) y usaremos eso para demostrar que la suma de los angulos interiores de un (n

+1)—agono convexo es 180((n+1)—-2).

Tomemos nuestro (n+1)—agono convexo. Se ve mas o menos asi:

Lo que vamos a hacer es trazar una recta que una dos vértices no consecutivos, de modo
que nos quede un n—3agono convexo con un tridngulo pegado. Es importante notar que
todos los dngulos interiores del (n+1)—agono convexo siguen ahi: todos excepto dos
guedan completo y esos dos se han dividido entre el tridngulo y el poligono menor.

Por hipotesis de induccidn, la suma de los angulos interiores del n—agono convexo es
180(n—2). Ademas, el tridangulo fue nuestro caso base, de modo que sabemos que la

suma de sus dangulos interiores es 180. Como sabemos que la suma de los angulos
interiores de nuestro poligono es igual a la suma de los dngulos interiores de los dos
poligonos en que dividimos la figura, la suma debe ser

180(n—2)+180=180(n—2+1)=180((n+1)-2)

gue es lo que queriamos demostrar.
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Diagonales de un poligono

Un ejercicio similar al anterior pide calcular la cantidad de diagonales de un poligono de n
vértices —y, por lo tanto, de n lados—. En este ejercicio, consideramos los lados como
diagonales, de modo que este problema es idéntico a calcular la cantidad de rectas que
determinan n puntos no colineales en el plano.

Queremos demostrar que la cantidad de diagonales de un poligono de n lados, donde los

nn-1)

lados cuentan como diagonales, es igual a . Por supuesto, existen otro tipo de

pruebas directas que, ademas de demostrar que ésta es la cantidad de diagonales,
construyen la férmula en el proceso de demostracion’. Procedemos por induccion.

El caso base es, de nuevo, un tridngulo, que es nuestro menor poligono. No es dificil ver
gue, en el caso del triangulo, las diagonales son Unicamente los lados y que

_n(n—l)_@_
==, s

3 3

de modo que la férmula funciona para un tridangulo.

n+1)n

Ahora, queremos demostrar que la cantidad de diagonales de un (n+1)—agono es (—)
. ) . . n(n—1) .

sabiendo que la cantidad de diagonales de un n—agono es —5 Teniendo nuestro (n

+1)—3agono dibujado, tomamos un punto para aislarlo del resto. Lo que nos queda es un n
—3agono y un punto. Trazamos todas las diagonales del n—agono, que son exactamente

@ por hipdtesis de induccion.

7 Una demostracion mucho muy directa es notar que para trazar una recta basta con elegir dos puntos.
Luego, la cantidad de rectas entre n puntos no colineales debe ser igual a la cantidad de maneras de
elegir dos de esos puntos.
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Para contar todas las diagonales del (n+1)—4&gono, falta Unicamente contar las diagonales
gue salen desde el punto que aislamos del resto. De ese punto sale una diagonal a cada
uno de los restantes n puntos, es decir, n diagonales adicionales en total.

Tenemos

n(n—1)+n_n2—n @_n2+n_n(n+1)
2 2 2 2 2

gue es lo que queriamos tener.

Esto concluye la prueba por induccion.
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Problemas

Te dejamos una lista de problemas que pueden demostrarse usando induccién matematica
y cuyo planteamiento es distinto a los problemas de la seccidén anterior.

Problema 1. Demuestra que un conjunto de n elementos tiene 2" subconjuntos.

Problema 2. Demostrar que un tablero de 2°°"* x2*'* al que le falta un cuadrito puede
ser cubierto totalmente con triminés en forma de L.

Problema 3. Demostrar que n rectas en el plano, tales que dos cualesquiera de ellas no son
paralelas y tres cualesquiera de ellas no tienen un punto en comun, determinan un mapa
coloreable con dos colores.

oy s 2" .
Problema 4. Sea n un entero positivo. Demuestra que el nimero 2° —1 tiene al menos n
factores primos distintos.
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Soluciones

Los problemas que propusimos en la seccidn anterior nos gustan tanto que no nos
aguantamos las ganas de escribir las soluciones. Por supuesto, ademds de la solucién,
escribimos todo como si fuera una importante leccién de vida. Si le quitas nuestro sermon
y consejos, la soluciéon es bastante mas breve.

Problema 1. Recordamos que el vacio y el todo son subconjuntos de todo conjunto.

Un conjunto de 1 elemento tiene dos subconjuntos: el vacio y el todo. Un conjunto de 2
elementos tiene cuatro subconjuntos: el vacio, el todo, el subconjunto con el primer
elemento y el subconjunto con el segundo elemento.

Supongamos que un conjunto de k elementos tiene 2* subconjuntos. Si agregamos un
elemento nuevo al conjunto, de cada subconjunto podemos hacer dos: uno que si contiene

al elemento nuevo, otro que no. Es decir, con k + 1 elementos tenemos 2(2*)=2""

elementos, como queriamos demostrar.

Problema 2. El problema de esta vez es uno particular que podemos tratar como general,
probar con induccidn y asi resolver el caso que queriamos tratar de manera inmediata. El
problema habla de un tablero de 2*'*x2*'" pero, como sucede muchas veces —no
siempre— cuando el problema tiene el numero del afio en que se aplica, la idea es
generalizarlo a un tablero de cualquier potencia de 2.

Tenemos un tablero de 2°°'* x2"* al que le falta un cuadrito. Queremos demostrar que es
posible llenarlo con fichas de trimind en forma de L. Lo que vamos a hacer es demostrar
que se puede llenar cualquier tablero de 2" x2", que implica directamente nuestro caso
particular.

Primero, necesitamos mostrar que existe un caso base que se puede. En este problema,
mostraremos que es posible llenar un tablero de 2x?2 independientemente del lugar
donde se encuentre el hueco.

. N

Para este
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tablero tan pequeno, considerar todos los casos es tarea sencilla.

Ahora, el paso inductivo. Queremos demostrar que si se puede llenar un tablero de 2F x 2*
al que le falta un cuadrito con triminds en forma de L, entonces también se puede llenar

un tablero de 2" x2¥*' con las mismas condiciones.

La idea es tomar nuestro tablero de 2! x2**' y partirlo en cuatro tableros, trazando las
dos perpendiculares a los lados que pasan por los puntos medios. Tenemos cuatro tableros
de 2°x 2" y el cuadrito que falta tiene que estar en alguno de esos cuatro®. Sin pérdida de
generalidad, digamos que esta en el sub-tablero inferior izquierdo. Luego, por hipdtesis de
induccién, ese sub-tablero de 2% x2* puede ser llenado. Para llenar los otros tres sub-
tableros, bastaria con ingeniarnosla para quitarles un cuadrito a cada uno. El siguiente
acomodo concluye la induccién:

™

————

ZNI - _k

r 2

Asi, si se puede para cualquier tablero de 2" x2", debe poderse para el caso particular que
nos corresponde.

8 Este ataque de dividir puede llenarnos a otra demostracion recursiva mas directa: subdividiendo cada
tablero en cuatro sub-tableros iguales, tomando el sub-tablero donde debe estar el hueco y repitiendo
esto, obtenemos una cadena de si y solo si que termina en un tablero de 2x2.
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Falsa Induccion

Vamos a demostrar que todas las pelotas del mundo son del mismo color’ usando
Induccion. Primero, el caso base. Tomamos una pelota. Claramente, dicha pelota es del
mismo color que si misma. Luego, suponemos que si tenemos n pelotas, todas deben ser
del mismo color.

Ahora nos enfrentamos al caso de n + 1 pelotas. Separamos una de ellas, digamos la pelota
X, y nos quedamos con n pelotas. Luego, por hipdtesis de induccidn, todas esas pelotas son
del mismo color. Luego, tomamos una pelota cualquiera, digamos Y, y la cambiamos con la
gue dejamos fuera. Otra vez tenemos n pelotas por lo que todas deben ser del mismo
color. Esto implica que X y Y son del mismo color entre ellas. Luego, las n + 1 pelotas son
todas del mismo color.

Evidentemente, no todas las pelotas del mundo son del mismo color. ¢ Cudl fue el error que
cometimos en esta demostracion??

9 Puedes pensar que todas son azules, por ejemplo. Este mismo razonamiento se puede usar para

demostrar que todos los gatos son verdes o que todas las personas son mujeres.

10 (Spoiler) Lo que estd mal es el caso base. Aunque sea lo normal, n= 1 no es el caso base pues no es
posible comparar mas de una pelota cuando solo hay una pelota. El caso base debe ser n =2 y no hay

manera de demostrar que cualesquiera dos pelotas son del mismo color.
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