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Principio de inducción 

La	
  inducción	
  matemá.ca	
  es	
  un	
  método	
  de	
  demostración	
  extremadamente	
  ú.l.	
  Se	
  emplea	
  
generalmente	
  al	
  probar	
  fórmulas	
  o	
  propiedades	
  de	
  los	
  números	
  naturales,	
  algunas	
  que	
  se	
  
pueden	
  extender	
  a	
  los	
  números	
  reales	
  con	
  ciertas	
  restricciones	
  —por	
  ejemplo,	
  leyes	
  de	
  los	
  
exponentes	
   con	
   base	
   real	
   pero	
   exponente	
   entero.	
   Parte	
   de	
   la	
   bondad	
   de	
   la	
   inducción	
  
matemá.ca	
  es	
  que	
  la	
  usamos	
  cuando	
  ya	
  sabemos	
  qué	
  queremos	
  demostrar	
  y	
  lo	
  único	
  que	
  
nos	
  falta	
  es	
  un	
  argumento	
  para	
  poder	
  asegurar	
  que	
  es	
  cierto.	
  	
  

Los	
   números	
   naturales	
   se	
   definen	
   de	
  manera	
   induc&va.	
   Es	
   decir,	
   incluso	
   hablando	
  muy	
  
informalmente,	
   al	
   describir	
   los	
   números	
   naturales	
   no	
   podemos	
   nombrar	
   a	
   todos	
   los	
  
números	
  naturales	
  puesto	
  que	
   son	
   infinitos,	
   lo	
  que	
  hacemos	
  normalmente	
  es	
  decir	
   algo	
  
como	
  “1	
  es	
  un	
  número	
  natural,	
  también	
  2	
  y	
  3	
  y	
  4	
  y	
  así	
  te	
  sigues,	
  si	
  le	
  sumas	
  1	
  a	
  un	
  número	
  
natural	
  te	
  da	
  otro	
  número	
  natural”.	
  Es	
  más,	
   los	
  niños	
  normalmente	
  se	
  pelean	
  de	
  manera	
  
induc.va:	
  “Tú	
  .enes	
  cara	
  de	
  popó”,	
  “No,	
  tú	
  .enes	
  más	
  cara	
  de	
  popó”,	
  “Tú	
  uno	
  más	
  que	
  yo	
  
para	
   siempre”.	
  Ese	
  “uno	
  más	
  para	
   siempre”	
  es	
  un	
  argumento	
   intui.vo	
   indestruc.ble:	
  no	
  
importa	
  qué	
  tan	
  grande	
  pienses	
  tu	
  número,	
  “uno	
  más”	
  es	
  siempre	
  más	
  grande.	
  

Esos	
  son	
  precisamente	
   los	
  Axiomas	
  de	
  Peano ,	
   la	
  manera	
  en	
  que	
  definimos	
   los	
  números	
  1

naturales:	
  

a.	
   1	
  es	
  un	
  número	
  natural.	
  

b.	
   si	
  n	
  es	
  un	
  número	
  natural,	
  entonces	
  n	
  +	
  1	
  también	
  es	
  número	
  natural.	
  	
  

En	
  el	
  caso	
  (b),	
  suponemos	
  la	
  existencia	
  de	
  algún	
  número	
  que	
  cumple	
  la	
  propiedad	
  de	
  ser	
  
natural.	
  Nuestra	
  hipótesis	
  no	
  es	
  descabellada,	
  pues	
  a	
  par.r	
  de	
  (a)	
  sabemos	
  que	
  existe	
  al	
  
menos	
  un	
  número	
  natural,	
  el	
  1.	
  La	
  manera	
  de	
  construir	
   los	
  números	
  naturales	
  no	
  es	
  tan	
  
dis.nta	
   de	
   la	
   manera	
   en	
   que	
   aprendemos	
   a	
   contar:	
   lo	
   único	
   que	
   necesitamos	
   es	
  
preguntarnos	
  por	
  el	
  siguiente	
  número	
  porque	
  debe	
  haber	
  un	
  siguiente	
  número,	
  ¿no	
  es	
  así?	
  	
  

El	
   principio	
   de	
   inducción	
   es	
   usar	
   esta	
   definición	
   para	
   probar	
   cosas.	
   También,	
   está	
   muy	
  
relacionado	
   con	
   las	
   definiciones	
   recursivas	
   de	
   ciertas	
   fórmulas	
   o	
   sucesiones.	
   Podemos	
  
definirlo	
  de	
  varias	
  maneras:	
  	
  

I.	
   Si	
  A	
  es	
  un	
  subconjunto	
  de	
  los	
  números	
  naturales	
  tal	
  que:	
  

a.	
   1	
  pertenece	
  a	
  A	
  

 Guiseppe Peano fue un matemático italiano —aunque cuando nació, en 1858, todavía no existía Italia 1

propiamente dicha. Trabajó muchos años ligado a la Universidad de Turín. 
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b.	
   si	
  n	
  pertenece	
  a	
  A,	
  entonces	
  n	
  +	
  1	
  pertenece	
  a	
  A	
  

Entonces	
  A	
  con.ene	
  a	
  todos	
  los	
  naturales.	
  	
  

II.	
   Si	
  una	
  propiedad	
  P	
  de	
  un	
  subconjunto	
  de	
  los	
  números	
  naturales	
  cumple	
  
que:	
  

a.	
   P	
  es	
  cierta	
  para	
  1	
  y	
  

b.	
   si	
  P	
  es	
  cierta	
  para	
  n,	
  entonces	
  P	
  es	
  cierta	
  para	
  n	
  +	
  1.	
  

Entonces	
  P	
  es	
  cierta	
  para	
  todos	
  los	
  naturales.	
  	
  

Estas	
  definiciones	
  son	
  equivalentes.	
  Es	
  más,	
  adelante	
  vamos	
  a	
  ver	
  que	
  este	
  principio	
  puede	
  
modificarse	
  ligeramente:	
  el	
  caso	
  base	
  no	
  .ene	
  que	
  ser	
  necesariamente	
  1,	
  por	
  ejemplo.	
  La	
  
idea	
  es	
  la	
  misma:	
  si	
   la	
  verdad	
  de	
  n	
  +	
  1	
  depende	
  únicamente	
  de	
  la	
  verdad	
  de	
  n	
  —o,	
  en	
  el	
  
caso	
  de	
   la	
   inducción	
   fuerte,	
  de	
   la	
   verdad	
  de	
   todos	
   los	
  anteriores—,	
  entonces	
  que	
  exista	
  
uno	
   solo	
   cuya	
   verdad	
   es	
   demostrable	
   de	
  manera	
   directa	
   implica	
   la	
   verdad	
   de	
   todos	
   los	
  
siguientes.	
  	
  

Analogía de los dominós 

Imaginemos	
  que	
  tenemos	
  un	
  montón	
  mucho	
  muy	
  grande	
  —potencialmente	
  infinito—	
  de	
  
dominós	
  puesto	
  en	
  una	
  especie	
  de	
  fila.	
  La	
  pregunta	
  es:	
  ¿qué	
  necesitamos	
  para	
  .rarlos	
  a	
  
todos?	
  El	
  hecho	
  de	
  que	
  sea	
  una	
  can.dad	
  quizás	
   infinita	
  de	
  dominós	
  nos	
  dice	
  que	
  es	
  una	
  
muy	
  mala	
  idea	
  intentar	
  .rarlos	
  uno	
  por	
  uno:	
  no	
  importa	
  cuántos	
  .remos,	
  nuestro	
  avance	
  
no	
  es	
  realmente	
  importante.	
  	
  

Si	
  ponemos	
  todos	
  nuestros	
  dominós	
  parados	
  en	
  una	
  fila,	
  necesitamos	
  sólo	
  asegurarnos	
  de	
  
dos	
  cosas	
  para	
  que	
  se	
  caigan	
  todos:	
  

a)	
   Que	
  exista	
  al	
  menos	
  un	
  dominó	
  que	
  se	
  caiga.	
  

b)	
   Que	
  si	
  un	
  dominó	
  cae,	
  empuje	
  al	
  siguiente.	
  	
  

Para	
  la	
  primera	
  parte,	
  no	
  .ene	
  que	
  ser	
  el	
  primer	
  dominó.	
  Si	
  .ramos	
  el	
  primero,	
  queremos	
  
que	
  se	
  caigan	
  todos;	
  pero	
  si	
  .ramos	
  el	
  segundo	
  o	
  el	
  tercero	
  o	
  el	
  quinto,	
  queremos	
  que	
  se	
  
caigan	
  todos	
  después	
  el	
  que	
  .ramos.	
  

Para	
  la	
  segunda	
  parte	
  tenemos	
  que	
  asegurarnos	
  que	
  la	
  distancia	
  entre	
  cada	
  dos	
  dominós	
  
no	
  sea	
  demasiada	
  o	
  que	
  estén	
  en	
  el	
  ángulo	
  correcto,	
  porque	
  si	
  uno	
  solo	
  no	
  empuja	
  al	
  que	
  
sigue,	
  entonces	
  no	
  se	
  van	
  a	
  caer	
  todos.	
  	
  

�6



Los	
  números	
  naturales	
  son	
  como	
  un	
  conjunto	
  infinito	
  pero	
  ordenado	
  de	
  dominós,	
  donde	
  
cada	
   dominó	
   .ene	
   escrito	
   un	
   número.	
   Las	
   pruebas	
   por	
   inducción	
   son	
   como	
   ordenar	
  
nuestros	
  dominós	
  parados	
  en	
  una	
  fila	
  y	
  ver	
  si	
  es	
  posible	
  empujar	
  alguno	
  para	
  que	
  se	
  caigan	
  
todos.	
  

a)	
   El	
  caso	
  base	
  es	
  asegurarse	
  de	
  que	
  exista	
  un	
  primer	
  dominó	
  que	
  se	
  caiga.	
  	
  

b)	
   El	
  paso	
  induc-vo	
  es	
  suponer	
  que	
  si	
  cumple	
  para	
  algún	
  entero,	
  cumple	
  para	
  el	
  
siguiente.	
  Como	
  sabemos	
  que	
  cumple	
  para	
  el	
  caso	
  base,	
  entonces	
  cumple	
  para	
  
el	
  siguiente;	
  como	
  cumple	
  para	
  el	
  siguiente,	
  cumple	
  a	
  su	
  vez	
  para	
  su	
  siguiente	
  y	
  
así	
  sucesivamente	
  cumplen	
  todos	
  los	
  enteros	
  a	
  par.r	
  del	
  caso	
  base.	
  	
  

Esos	
  dos	
  pasos	
  nos	
  aseguran	
  que	
  se	
  caen	
  todos	
  los	
  dominós	
  sin	
  necesidad	
  de	
  verlos	
  caer .	
  	
  2

Para	
  “explicar”	
   la	
   inducción,	
  vamos	
  a	
  ver	
  cómo	
   funciona.	
  Estudiamos	
  un	
  ejercicio	
  clásico	
  
para	
  el	
  tema:	
  la	
  fórmula	
  de	
  Gauss.	
  	
  

Suma de los primeros naturales 

Existe	
  una	
  fórmula	
  que	
  usamos	
  para	
  sumar	
  los	
  primeros	
  n	
  naturales	
  que	
  es	
  

� 	
  

y	
   que	
   conocemos	
   coloquialmente	
   como	
   Fórmula	
   de	
   Gauss	
   como	
   parte	
   de	
   la	
   mitología	
  
matemá.ca	
   que	
   rodea	
   esta	
   fórmula	
   con	
   una	
   anécdota	
   del	
   matemá.co	
   Carl	
   Friedrich	
  
Gauss,	
  el	
  príncipe	
  de	
  los	
  matemá&cos,	
  cuando	
  era	
  solo	
  un	
  pequeño	
  alumno	
  de	
  primaria.	
  	
  

Podemos	
  ver	
  que	
  esta	
  fórmula	
  funciona	
  para	
  los	
  primeros	
  enteros,	
  por	
  ejemplo:	
  

1+ 2 + 3+ ...+ n = n(n +1)
2

 Muchos autores trabajan con tres pasos: el caso base, la hipótesis de inducción y el paso inductivo. A 2

nosotros nos gusta entenderlo únicamente como dos pasos porque la hipótesis no es relevante hasta que 
se usa, es decir, hasta que pasamos al paso inductivo. 
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En	
  la	
  tabla	
  anterior	
  vemos	
  que	
  la	
  suma	
  y	
  la	
  fórmula	
  coinciden	
  en	
  los	
  primeros	
  diez	
  valores.	
  
Si	
   lo	
   hiciéramos	
   para	
   los	
   siguientes	
   valores,	
   ¿seguirá	
   coincidiendo?	
   ¿Cuántos	
   valores	
  
debemos	
  probar	
  para	
  asegurarnos	
  que	
  la	
  fórmula	
  es	
  siempre	
  cierta?	
  

La	
  cosa	
  es	
  que,	
  dado	
  que	
  los	
  naturales	
  son	
  infinitos,	
  cualquier	
  avance,	
  por	
  grande	
  que	
  sea,	
  
es	
   insignificante	
  pues	
   infinito	
  menos	
  cualquier	
  natural	
  sigue	
  siendo	
  infinito.	
  Sin	
  embargo,	
  
haciendo	
  muchos	
   casos	
   puede	
   surgir	
   la	
   intuición	
   de	
   que,	
   dado	
   que	
   ha	
   sido	
   cierto	
   para	
  
todos	
  hasta	
  ahora,	
  seguirá	
  siendo	
  cierto	
  para	
  los	
  demás.	
  Es	
  decir,	
  aquí	
  es	
  cuando	
  entra	
  la	
  
Inducción.	
  	
  

Ya	
   demostramos	
   que	
   cumple	
   para	
   algunos	
   naturales,	
   eso	
   es	
   nuestro	
   caso	
   base.	
   Ahora,	
  
suponemos	
  que	
  existe	
  algún	
  natural	
  k	
  para	
  el	
  cual	
  es	
  cierto.	
  Esta	
  hipótesis	
  no	
  es	
  del	
  todo	
  
infundada	
  pues	
  ya	
  encontramos	
  muchos	
  valores	
  para	
  el	
  cual	
  es	
  cierto.	
  Sin	
  embargo,	
  lo	
  que	
  
estamos	
  diciendo	
  es	
  que	
  para	
  nuestro	
  natural	
  k	
  se	
  cumple	
  que	
  

� 	
  

Sin	
   embargo,	
   es	
   una	
   suposición.	
   Estamos	
   suponiendo	
   que	
   existe	
   algún	
   natural	
  k	
   para	
   el	
  
cual	
  eso	
  es	
  cierto.	
  Ahora,	
  como	
  eso	
  es	
  cierto	
  —por	
  hipótesis—	
  entonces	
  debe	
  ser	
  cierto	
  
que	
  

� 	
  

y,	
  haciendo	
  algo	
  de	
  álgebra,	
  obtenemos	
  

� 	
  

n suma fórmula

1 1 1(2)/2 = 1

2 1 + 2 = 3 2(3)/2 = 3

3 1 + 2 + 3 = 6 3(4)/2 = 6

4 1 + 2 + 3 + 4 = 10 4(5)/2 = 10

5 1 + 2 + 3 + 4 + 5 = 15 5(6)/2 = 15

6 1 + 2 + 3 + 4 + 5 + 6 = 21 6(7)/2 = 21

7 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 7(8)/2 = 28

8 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 8(9)/2 = 36

9 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 9(10)/2 = 45

10 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 10(11)/2 = 55

1+ 2 + 3+ ...+ k = k(k +1)
2

1+ 2 + 3+ ...+ k + (k +1) = k(k +1)
2

+ (k +1)

k(k +1)
2

+ (k +1) = k(k +1)+ 2(k +1)
2

= (k +1)(k + 2)
2
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que	
  es	
  exactamente	
  la	
  misma	
  fórmula	
  pero	
  para	
  n	
  =	
  k	
  +	
  1,	
  es	
  decir,	
  para	
  el	
  siguiente	
  valor.	
  
Esto	
   quiere	
   decir	
   que	
   si	
   es	
   cierto	
   para	
   algún	
   número,	
   también	
   debe	
   ser	
   cierto	
   para	
   el	
  
siguiente	
  y	
  eso	
  es	
  el	
  principio	
  induc.vo.	
  	
  

Luego,	
   como	
   al	
  menos	
   es	
   cierto	
   para	
   los	
   números	
   del	
   1	
   al	
   10,	
   y	
   si	
   es	
   cierto	
   para	
   algún	
  
número	
  también	
   lo	
  es	
  para	
  su	
  siguiente,	
  entonces	
  es	
  cierto	
  para	
  todos	
  y	
  eso	
  concluye	
   la	
  
prueba.	
  	
  

Suma de impares 

Vamos	
  a	
  demostrar	
  que	
  	
  

� 	
  

es	
  decir,	
  que	
  la	
  suma	
  de	
  los	
  primeros	
  n	
  impares	
  es	
  igual	
  a	
   � .	
  Para	
  convencernos	
  de	
  esta	
  
idea,	
  veamos	
  que	
  es	
  cierto	
  para	
  los	
  primeros	
  casos:	
  

Para	
  � ,	
  � .	
  	
  

Para	
  � ,	
  � .	
  	
  

Para	
  � ,	
  � .	
  	
  

Para	
  � ,	
  � .	
  

Para	
  � ,	
  � .	
  	
  

Creemos	
  que	
  ya	
  nos	
  convencimos	
  lo	
  suficiente.	
  Ahora,	
  suponemos	
  que	
  existe	
  un	
  natural	
  k	
  
tal	
  que	
   � 	
  y,	
  usando	
  esa	
  hipótesis,	
  queremos	
  calcular	
  cuánto	
  vale	
  
� .	
  	
  

� 	
  

que	
  es	
  exactamente	
  lo	
  que	
  queríamos.	
  Esto	
  concluye	
  la	
  inducción	
  y	
  la	
  demostración.	
  	
  

1+ 3+ 5 + 7 + 9 + ...+ (2n −1) = n2

n2

n = 1 1= 12

n = 2 1+ 3= 4 = 22

n = 3 1+ 3+ 5 = 9 = 32

n = 4 1+ 3+ 5 + 7 = 16 = 42

n = 5 1+ 3+ 5 + 7 + 9 = 25 = 52

1+ 3+ 5 + ...+ (2k −1) = k2

1+ 3+ 5 + ...+ (2k −1)+ (2(k +1)−1)

1+ 3+ 5 + ...+ (2k −1)+ (2(k +1)−1) = k2 + (2(k +1)−1) = k2 + 2k +1= (k +1)2
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Otro, otro 

Es	
   probable	
   que	
   ya	
   conocieras	
   los	
   dos	
   resultados	
   anteriores.	
   Eso	
   no	
   quiere	
   decir	
   que	
   la	
  
Inducción	
   únicamente	
   sirva	
   para	
   demostrar	
   lo	
   que	
   ya	
   sabes.	
   La	
   relación	
   que	
   queremos	
  
probar	
  ahora	
  es	
  	
  

� .	
  

Veamos	
  que	
  cumple	
  para	
  algunos	
  casos:	
  

Para	
  � ,	
  � .	
  	
  

Para	
  � ,	
  � .	
  	
  

Ahora,	
  sabiendo	
  que	
  � ,	
  veamos	
  que	
  

� 	
  

que	
  es	
  la	
  fórmula	
  para	
  � .	
  Esto	
  concluye	
  la	
  demostración	
  por	
  inducción.	
  	
  

Uno de divisibilidad 

También	
   podemos	
   usar	
   la	
   Inducción	
   Matemá.ca	
   para	
   demostrar	
   afirmaciones	
   sobre	
   la	
  
divisibilidad	
  de	
  números	
  naturales,	
  cuando	
  dichas	
  afirmaciones	
  hablan	
  de	
  propiedades	
  de	
  
los	
  naturales	
  como	
  conjunto	
  completo.	
  	
  

Queremos	
   demostrar	
   que	
   � 	
   es	
   divisible	
   entre	
   6	
   para	
   todo	
   n	
   natural.	
   Veamos	
   si	
  
cumple	
  para	
  los	
  primeros	
  naturales:	
  

Para	
  � ,	
  tenemos	
  � 	
  que	
  es	
  múl.plo	
  de	
  6.	
  	
  

Para	
  � ,	
  tenemos	
  � 	
  que	
  es	
  múl.plo	
  de	
  6.	
  	
  

1(2)+ 2(3)+ 3(4)+ ...+ n(n +1) = n(n +1)(n + 2)
3

n = 1 2 = 1(2) = 1(2)(3)
3

= 2

n = 2 8 = 2 + 6 = 1(2)+ 2(3) = 2(3)(4)
3

= 8

1(2)+ 2(3)+ 3(4)+ ...+ k(k +1) = k(k +1)(k + 2)
3

1(2)+ 2(3)+ ...+ k(k +1)+ (k +1)(k + 2) = k(k +1)(k + 2)
3

+ (k +1)(k + 2)

= (k +1)(k + 2) k
3
+1⎡

⎣⎢
⎤
⎦⎥
= (k +1)(k + 2)(k + 3)

3

k +1

n(n2 + 5)

n = 1 1(12 + 5) = 6

n = 2 2(22 + 5) = 2(9) = 18
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Para	
  � ,	
  tenemos	
  � 	
  que	
  es	
  múl.plo	
  de	
  6.	
  	
  

Y	
  con	
  esos	
  basta	
  para	
  convencernos	
  de	
  que	
  no	
  es	
  una	
  afirmación	
  tan	
  descabellada.	
  Ahora,	
  
exploraremos	
   la	
   afirmación	
   para	
   � 	
   para	
   ver	
   si	
   es	
   posible	
   que	
   su	
   veracidad	
   dependa	
  
únicamente	
  de	
  la	
  verdad	
  de	
  la	
  misma	
  afirmación	
  pero	
  para	
  � .	
  	
  

Veamos	
  que	
  

� 	
  

y	
   lo	
   separamos	
  de	
  esa	
  manera	
  para	
  poder	
   reducirlo	
  a	
   casos	
  anteriores.	
  Desarrollando	
   la	
  
mul.plicación	
  tenemos	
  

� .	
  

Además,	
  	
  

� .	
  	
  

Si	
  a	
  un	
  múl.plo	
  de	
  6	
  le	
  quitamos	
  o	
  agregamos	
  múl.plos	
  de	
  6,	
  el	
  resultado	
  sigue	
  siendo	
  un	
  
múl.plo	
  de	
  6.	
  Claramente	
  6	
  es	
  múl.plo	
  de	
  6.	
  Además,	
   � 	
  siempre	
  es	
  múl.plo	
  de	
  6	
  

porque	
   	
   siempre	
   es	
   par .	
   Luego,	
   	
   es	
  múl.plo	
   de	
   6	
   si	
   y	
   solo	
   si	
  3

� 	
  es	
  múl.plo	
  de	
  6.	
  	
  

La	
  condición	
  anterior	
  es	
  equivalente	
  al	
  paso	
  induc.vo	
  pues	
  demostramos	
  que	
  si	
  es	
  cierto	
  
para	
  alguno,	
  también	
  debe	
  ser	
  cierto	
  para	
  el	
  siguiente.	
  Esto	
  concluye	
  la	
  prueba.	
  	
  

Inducción fuerte con divisibilidad 

Vamos	
  a	
  saltar	
  de	
  un	
  ejercicio	
  de	
  divisibilidad	
  rela.vamente	
  sencillo	
  como	
  el	
  anterior	
  a	
  uno	
  
mucho	
   más	
   general.	
   Sin	
   embargo,	
   las	
   ideas	
   son	
   siempre	
   las	
   mismas;	
   si	
   acaso,	
   para	
  
problemas	
  de	
  divisibilidad	
  usamos	
  la	
   idea	
  de	
  que,	
  si	
  tenemos	
  un	
  múl.plo	
  de	
  n,	
   	
  sumar	
  y	
  
restar	
  múl.plos	
  de	
  n	
  sigue	
  siendo	
  un	
  múl.plo	
  de	
  n.	
  	
  

Queremos	
   demostrar	
   que	
   � 	
   es	
   un	
   factor	
   de	
   � 	
   para	
   todo	
   n	
   natural.	
   Para	
   los	
  
primeros	
  casos	
  es	
  sencillo	
  de	
  ver.	
  	
  

n = 3 3(32 + 5) = 3(14) = 42

n +1
n

(n +1) (n +1)2 + 5⎡⎣ ⎤⎦ = (n +1) n
2 + 2n +1+ 5⎡⎣ ⎤⎦ = (n +1) (n

2 + 5)+ (2n +1)⎡⎣ ⎤⎦

n(n2 + 5)+ n(2n +1)+ n2 + 2n + 6

n(2n +1)+ n2 + 2n = 3n2 + 3n = 3(n2 + n)

3(n2 + n)

n2 + n (n +1) (n +1)2 + 5⎡⎣ ⎤⎦
n(n2 + 5)

x − y xn − yn

 Estamos haciendo trampa. Esa afirmación se puede verificar fácilmente probando los casos par e 3

impar. Sin embargo, ese tipo de idea es el de una demostración directa. Esta afirmación también se 
puede demostrar usando Inducción Matemática pero no nos queremos detener en eso ahora; en la 
siguiente sección tendremos una demostración por Inducción que sí incluye la demostración de una 
afirmación similar usando Inducción. 
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Para	
  � ,	
  es	
  claro	
  que	
  � 	
  es	
  factor	
  de	
  � .	
  	
  

Para	
  � ,	
  tenemos	
  que	
  � 	
  de	
  donde	
  vemos	
  que	
  � 	
  es	
  factor.	
  	
  

Ahora,	
  supongamos	
  que	
  existe	
  un	
  entero	
   � 	
  para	
  el	
  cual	
  es	
  cierto	
  que	
   � 	
  es	
   factor	
  de	
  

� .	
   Luego,	
   como	
   � 	
   es	
   múl.plo	
   de	
   � ,	
   tanto	
   � 	
   como	
   � 	
  
también	
  lo	
  son.	
  Si	
  sumamos	
  estos	
  dos	
  números	
  obtenemos	
  

� 	
  

que	
   también	
   es	
  múl.plo	
   de	
   � .	
   Luego,	
   � 	
   sería	
  múl.plo	
   de	
   � 	
   si	
   y	
   solo	
   si	
  

� 	
  también	
  lo	
  es.	
  Vamos	
  a	
  centrarnos	
  en	
  demostrar	
  esto	
  úl.mo.	
  Veamos	
  que	
  

� 	
  

por	
   lo	
  que	
  acabaríamos	
   si	
   � 	
   fuera	
  múl.plo	
  de	
   � .	
   En	
  estos	
   casos,	
  usamos	
   lo	
  
que	
  se	
  llama	
  Inducción	
  Fuerte,	
  que	
  consiste	
  en	
  suponer	
  no	
  solo	
  que	
  el	
  caso	
  para	
  k	
  es	
  cierto	
  
sino	
   también	
   todos	
   los	
   casos	
   desde	
   1	
   hasta	
   k.	
   El	
   principio	
   de	
   Inducción	
   Fuerte	
   es	
  
equivalente	
  a	
  la	
  Inducción	
  común	
  y	
  corriente	
  como	
  la	
  hemos	
  manejado.	
  	
  

Afortunadamente,	
   en	
   este	
   caso,	
   usar	
   Inducción	
   Fuerte	
   en	
   este	
   ejemplo	
   nos	
   permite	
  
concluir	
   la	
  prueba	
  con	
  lo	
  que	
  tenemos.	
  Es	
  decir,	
  suponiendo	
  que	
  es	
  cierto	
  para	
  todos	
  los	
  
valores	
  desde	
  1	
  hasta	
  k	
  implica	
  que	
  es	
  cierto	
  para	
  k	
  +	
  1.	
  Luego,	
  como	
  encontramos	
  que	
  es	
  
cierto	
  para	
  1	
  —y	
  también,	
  aunque	
  no	
  es	
  necesario,	
  encontramos	
  que	
  es	
  cierto	
  para	
  2—,	
  
concluimos	
  que	
  es	
  cierto	
  para	
  todos.	
  	
  

El caso base no siempre es el 1 

De	
  todo	
   lo	
  que	
  podría	
  salir	
  mal	
  en	
  una	
   inducción,	
  esto	
  es	
   lo	
  menos	
  preocupante.	
  Es	
  una	
  
sencilla	
   lección	
  en	
  perseverancia	
  y	
  confiar	
  en	
   tus	
   ins.ntos.	
  Lo	
  primero	
  que	
   tenemos	
  que	
  
encontrar	
  es	
  nuestro	
  caso	
  base.	
  	
  

Queremos	
  demostrar	
  que	
   � para	
   toda	
  n.	
  Procedemos	
  por	
   inducción.	
  Naturalmente,	
  
lo	
  primero	
  que	
  debemos	
  hacer	
  es	
  encontrar	
  un	
  caso	
  base.	
  	
  

Si	
  n	
  =	
  1,	
  � 	
  

Si	
  n	
  =	
  2,	
  � 	
  

Si	
  n	
  =	
  3,	
  � 	
  

Si	
  n	
  =	
  4,	
  � 	
  

n = 1 x − y x − y

n = 2 x2 − y2 = (x + y)(x − y) x − y

k x − y

xk − yk xk − yk x − y x(xk − yk ) y(xk − yk )

xk+1 − xyk + yxk − yk+1

x − y xk+1 − yk+1 x − y

yxk − xyk

yxk − xyk = xy(xk−1 − yk−1)

xk−1 − yk−1 x − y

2n < n!

21 = 2 >1= 1!

22 = 4 > 2 = 2!

23 = 8 > 6 = 3!

24 = 16 < 24 = 4!
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Vamos	
  a	
  tomar	
  4	
  como	
  nuestro	
  caso	
  base	
  porque	
  es	
  el	
  primer	
  natural	
  que	
  cumple.	
  Aunque	
  
tardamos	
  en	
  encontrar	
  un	
  caso	
  base,	
  nuestra	
  intuición	
  nos	
  diría	
  que	
  la	
  que	
  la	
  proposición	
  
es	
   verdadera	
   pues	
   del	
   lado	
  menor	
   estoy	
  mul.plicando	
  puros	
   factores	
   2,	
   del	
   lado	
  mayor	
  
mul.plico	
  factores	
  crecientes.	
  	
  

Así	
  pues,	
  lo	
  que	
  queremos	
  demostrar	
  ahora	
  es	
  que	
  � 	
  para	
  � .	
  

Como	
   ya	
   encontramos	
   el	
   caso	
   base,	
   sigue	
   el	
   paso	
   induc.vo,	
   es	
   decir,	
   demostrar	
   que	
  
� 	
   si	
   sabemos	
  que	
   � .	
   Este	
  paso	
   induc.vo	
   lo	
  podemos	
  hacer	
  de	
  muchas	
  
maneras	
  dis.ntas,	
   todas	
   igual	
  de	
  válidas	
  si	
   tenemos	
  cuidado	
  en	
   los	
  detalles.	
  Veamos	
  dos	
  
de	
  estas	
  maneras.	
  La	
  primera	
  sería:	
  

� 	
  

donde	
  � es	
  cierto	
  por	
  la	
  condición	
  del	
  problema	
  y	
  � 	
  es	
  cierto	
  por	
  hipótesis.	
  Es	
  
muy	
  importante	
  notar	
  que	
  no	
  conocemos	
  la	
  verdad	
  del	
  signo	
  “<“	
  al	
  principio	
  del	
  
enunciado,	
  pero	
  que	
  el	
  signo	
  de	
  si	
  y	
  solo	
  si	
  hace	
  que	
  no	
  sea	
  problema.	
  El	
  signo	
  al	
  final	
  no	
  
es	
  el	
  “solo	
  si”	
  sino	
  el	
  “si”.	
  	
  

Segunda	
  manera:	
  

� 	
  

que	
  es	
  esencialmente	
  la	
  misma	
  manera	
  anterior	
  excepto	
  que	
  esta	
  parte	
  de	
  la	
  hipótesis	
  de	
  
inducción	
   para	
   llegar	
   a	
   aquello	
   que	
   queremos	
   demostrar	
   en	
   lugar	
   de	
   par.r	
   de	
   lo	
   que	
  
queremos	
  demostrar	
  para	
  ver	
  que	
  depende	
  únicamente	
  de	
  la	
  hipótesis	
  de	
  inducción,	
  como	
  
hicimos	
  en	
  la	
  primera	
  manera.	
  	
  

Lo	
  que	
  hicimos	
  fue	
  demostrar	
  que	
  la	
  desigualdad	
  es	
  cierta	
  para	
  todos	
  los	
  naturales	
  a	
  par.r	
  
del	
  4.	
  Este	
  es	
  un	
  caso	
  de	
   Inducción	
   Incompleta	
  pues	
  el	
  conjunto	
  para	
  el	
  cual	
  es	
  válida	
   la	
  
afirmación	
  no	
  es	
  igual	
  al	
  conjunto	
  de	
  todos	
  los	
  naturales.	
  	
  

MA — MG 

La	
   inducción	
   se	
   limita	
   a	
   propiedades	
   de	
   los	
   números	
   naturales.	
   Así,	
   no	
   podemos	
   usar	
  
inducción	
   para	
   demostrar	
   la	
   desigualdad	
   de	
   la	
   Media	
   Geométrica	
   —	
  Media	
   Aritmé.ca	
  
pero	
  sí	
  podemos	
  usarla	
  para	
  demostrar	
  que	
  es	
  válida	
  para	
  cualquier	
  can.dad	
  de	
  términos.	
  	
  

2n < n! n ≥ 4

2k+1 < (k +1)! 2k < k!

2k+1 < (k +1)!⇔ 2(2k ) < (k +1)k!
⇐ 2 < k ∧ 2k < k!

2 < k 2k < k!

2k < k!⇒ 2(2k ) < 2(k!)
⇒ 2k+1 < 2(k!) < (k +1)(k!)
⇔ 2 < k +1
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La	
  desigualdad	
  de	
   la	
  Media	
  Aritmé.ca	
  —	
  Media	
  Geométrica	
  dice	
  que,	
  para	
  cualesquiera	
  
� 	
  reales	
  posi.vos,	
  se	
  cumple	
  que	
  	
  

� 	
  

Nuestro	
   caso	
   base	
   será	
   � 	
   pues	
   el	
   caso	
   � 	
   no	
   .ene	
   ningún	
   chiste.	
   Veamos	
  
efec.vamente	
  que,	
  para	
  cualesquiera	
  dos	
  reales	
  posi.vos	
  � 	
  tenemos	
  que	
  

� 	
  

que	
  es	
  siempre	
  cierto	
  pues	
  todo	
  cuadrado	
  es	
  no	
  nega.vo.	
  	
  	
  	
  

Vamos	
  a	
  suponer	
  que	
  la	
  desigualdad	
  MA—MG	
  es	
  cierta	
  para	
  n	
  —	
  1	
  elementos	
  y	
  usaremos	
  
eso	
  para	
  demostrar	
  que	
  es	
   cierto	
  para	
  n	
   elementos.	
   Sean	
   � 	
   números	
  

reales	
   posi.vos	
   y	
   sea	
   � 	
   su	
   media	
   geométrica.	
   Sin	
   pérdida	
   de	
  

generalidad,	
  supongamos	
  que	
  � .	
  Sabemos	
  que	
  � .	
  	
  

Antes	
  del	
  paso	
  induc.vo,	
  probaremos	
  que	
  	
  

� .	
  

Efec.vamente,	
  veamos	
  que	
  

� 	
  

simplificando,	
  nos	
  queda	
  

� 	
  

que	
   es	
   no	
   nega.vo	
   pues	
   � 	
   y	
   como	
   � ,	
   las	
   dos	
   restas	
   son	
   no	
  

nega.vas.	
  	
  

Ahora	
   sí,	
   por	
   hipótesis	
   de	
   inducción,	
   la	
   desigualdad	
   MA—MG	
   es	
   cierta	
   para	
   cualquier	
  
conjunto	
  de	
  n	
  —	
  1	
  elementos.	
  En	
  par.cular,	
  	
  

� 	
  

x1, x2, x3,..., xn

x1 + x2 + x3 + ...+ xn
n

≥ x1x2x3···xnn

n = 2 n = 1
x, y

x + y
2

≥ xy ⇔ x2 + 2xy + y2

4
≥ xy

⇔ x2 + 2xy + y2 ≥ 4xy⇔ x2 − 2xy + y2 = (x − y)2 ≥ 0

a1,a2,a3,...,an−1,an
G = a1a2a3!an−1ann

a1 ≤ a2 ≤!≤ an a1 ≤G ≤ an

a1 + an ≥
a1an
G

+G

a1 + an −G − a1an
G

= a1
G

G − an( )+ (an −G) = an −G( ) − a1
G

+1⎡
⎣⎢

⎤
⎦⎥

1
G
(an −G)(G − a1)

G > 0⇒ 1
G

> 0 an ≥G ≥ a1

a2 + a3 +!+ an−1 +
a1an
G

n −1
≥ Gn

G
n−1 = G
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es	
  decir,	
  	
  

� .	
  

Sumando	
  � 	
  de	
  ambos	
  lados,	
  obtenemos	
  

� 	
  

y,	
  usando	
  la	
  desigualdad	
  que	
  demostramos	
  antes,	
  	
  

� 	
  

que	
  implica	
  inmediatamente	
  

� 	
  

que	
  es	
  lo	
  que	
  queríamos	
  demostrar.	
  	
  

Seguro	
   puedes	
   apreciar,	
   en	
   esta	
   úl.ma	
   demostración,	
   que	
   no	
   u.lizamos	
   únicamente	
   la	
  
inducción.	
   Es	
   decir,	
   la	
   inducción	
   fue	
   sencilla	
   únicamente	
   después	
   de	
   demostrar	
   cierta	
  
desigualdad	
  muy	
  ú.l	
  que	
  parece	
  sacada	
  de	
  la	
  nada.	
  	
  

La	
   inducción	
  matemá.ca	
  es	
  una	
  herramienta	
  que	
  revisamos	
  dentro	
  de	
   los	
  contenidos	
  de	
  
Olimpiada	
  de	
  Matemá.cas	
  —normalmente	
  en	
  el	
  área	
  de	
  Combinatoria,	
  pero	
  en	
  realidad	
  
es	
   ú.l	
   en	
   cualquier	
   otra—	
  que,	
   sin	
   embargo,	
   se	
   ex.ende	
   a	
   las	
   herramientas	
   básicas	
   del	
  
matemá.co	
  profesional	
  y	
  se	
  revisa	
  en	
  al	
  menos	
  un	
  curso	
  básico	
  de	
  la	
  Licenciatura.	
  Por	
  muy	
  
complicado	
  que	
  pueda	
  parecer,	
  es	
  una	
  herramienta	
  sencilla	
  que	
  es	
  necesario	
  dominar.	
  

A	
  par.r	
  de	
  aquí,	
  empezaremos	
  a	
  mostrar	
  cómo	
  usar	
  la	
  inducción	
  matemá.ca	
  en	
  dis.ntos	
  
contextos.	
   Analizaremos	
   sus	
   ventajas	
   y	
   también	
   los	
   aspectos	
   con	
   los	
   que	
   hay	
   que	
   tener	
  
cuidado.	
   Por	
   úl.mo,	
   un	
   par	
   de	
   problemas	
   de	
   otro	
   .po	
  —más	
   cercano	
   a	
   la	
   Olimpiada,	
  
dis.ntos	
  a	
  fórmulas	
  y	
  divisibilidad—	
  que	
  muestran	
  un	
  poco	
  más	
  del	
  poder	
  de	
  la	
  inducción.	
  
Al	
  final,	
  una	
  enorme	
  lista	
  de	
  ejercicios	
  y	
  problemas.	
  	
  

a2 + a3 +!+ an−1 +
a1an
G

≥ (n −1)G

G

a2 + a3 +!+ an−1 +
a1an
G

+G ≥ nG

a2 + a3 +!+ an−1 + a1 + a2 ≥ a2 + a3 +!+ an−1 +
a1an
G

+G ≥ nG

a1 + a2 +!+ an−1 + an
n

≥G
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El lado bueno de la inducción 

Empezamos	
  por	
  mostrar	
  las	
  ventajas	
  de	
  la	
  inducción	
  que	
  saltan	
  a	
  la	
  vista.	
  Una	
  de	
  ellas	
  es	
  
clara:	
   reduce	
  el	
   trabajo	
  de	
  “pensar”.	
   La	
   Inducción	
  nos	
  ayuda	
  a	
  demostrar	
  que	
   relaciones	
  
que	
   creemos	
   que	
   son	
   verdaderas	
   son,	
   efec.vamente,	
   verdaderas.	
   Así,	
   es	
   una	
   excelente	
  
herramienta	
  para	
  demostrar	
  nuestras	
  corazonadas,	
   intuiciones	
  y	
  conjeturas.	
  Es	
  decir,	
  eso	
  
que	
  crees	
  que	
  es	
  cierto	
  porque	
  ha	
  funcionado	
  para	
  todos	
  los	
  números	
  que	
  has	
  intentado	
  
demuéstralo	
  con	
  inducción.	
  

El	
  caso	
  que	
  vamos	
  a	
  estudiar	
  primero	
  es	
  el	
  de	
   la	
  suma	
  de	
   los	
  cuadrados	
  de	
   los	
  números	
  
naturales.	
  Esa	
  relación	
  está	
  dada	
  por	
  

� 	
  

Tuvieron	
  que	
  pasar	
  años	
  y	
  algunos	
  matemá.cos	
  brillantes	
  antes	
  de	
  tener	
  una	
  prueba	
  no	
  
induc.va	
  de	
  esta	
  fórmula.	
  Por	
  supuesto,	
  la	
  prueba	
  por	
  inducción	
  es	
  igual	
  de	
  válida.	
  	
  

Sin usar inducción 

Que	
  es	
  lo	
  que	
  queríamos	
  demostrar.	
  En	
  esta	
  demostración	
  no	
  sólo	
  demostramos	
  la	
  validez	
  
de	
   la	
   fórmula,	
   además	
   la	
   construimos.	
   Este	
   .po	
   de	
   prueba	
   se	
   llama	
   prueba	
   directa.	
   La	
  
enorme	
  diferencia	
  con	
  la	
  prueba	
  por	
  inducción	
  es	
  que	
  esta	
  prueba	
  funciona	
  incluso	
  si	
  no	
  
supiéramos	
   a	
   qué	
   queremos	
   llegar	
   y,	
   en	
   ese	
   sen.do,	
   es	
   más	
   “fuerte”	
   que	
   una	
  
demostración	
  por	
  inducción.	
  Mientras	
  que	
  la	
  inducción	
  nos	
  puede	
  ayudar	
  a	
  demostrar	
  una	
  
fórmula	
   análoga	
   para	
   cubos,	
   una	
   prueba	
   análoga	
   a	
   ésta	
   nos	
   ayudaría	
   a	
   encontrar	
   una	
  
fórmula	
  para	
  cuartas	
  o	
  quintas	
  potencias.	
  	
  

La	
   idea	
  de	
  esta	
  prueba	
  es	
  observar	
  que	
   � .	
  
Hacemos	
  esto	
  para	
  los	
  primeros	
  n	
  enteros:	
  

12 + 22 + 32 + ...+ n2 = n(n +1)(2n +1)
6

(k +1)3 − k 3 = k 3 + 3k2 + 3k +1− k 3 = 3k2 + 3k +1
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� 	
  

Si	
  sumamos	
  todos	
  los	
  términos	
  del	
  lado	
  izquierdo,	
  podemos	
  ver	
  que	
  todos	
  los	
  términos	
  se	
  
cancelan.	
  Por	
  ejemplo:	
  el	
  2	
  del	
  primer	
  renglón	
  se	
  cancela	
  con	
  el	
  2	
  del	
  segundo	
  renglón,	
  el	
  3	
  
del	
  segundo	
  renglón	
  se	
  cancela	
  con	
  el	
  3	
  del	
  tercer	
  renglón,	
  etcétera.	
  Así,	
  todos	
  se	
  cancelan	
  
excepto	
   � 	
   del	
   úl.mo	
   renglón	
   y	
   � 	
   del	
   primer	
   renglón.	
   Del	
   lado	
   derecho,	
   todo	
   se	
  
puede	
  sumar	
  sin	
  problemas	
  y,	
  todavía	
  más,	
  podemos	
  tomar	
  el	
  3	
  como	
  término	
  semejante.	
  	
  

� 	
  

De	
  donde	
  el	
  úl.mo	
  término	
  es	
  n	
  porque	
  estamos	
  sumando	
  n	
  veces	
  1.	
  Ahora,	
  recordemos	
  

que,	
  como	
  vimos	
  en	
   la	
   sección	
  anterior,	
   � .	
   También,	
  ya	
   tenemos	
  

en	
  la	
  expresión	
  anterior	
  la	
  suma	
  que	
  queremos,	
  por	
  lo	
  que	
  es	
  conveniente	
  despejarla	
  de	
  la	
  
ecuación.	
   Por	
   facilidad	
   de	
   notación,	
   vamos	
   a	
   decir	
   que	
   � .	
   La	
  
expresión,	
  antes	
  de	
  despejar,	
  nos	
  queda	
  como	
  

� 	
  

Y,	
  despejando	
  para	
  � ,	
  nos	
  queda	
  

� 	
  

que	
  se	
  ve	
  medio	
  feo	
  pero	
  podemos	
  acomodar.	
  Fíjate	
  que	
  � 	
  y	
  que	
  tenemos	
  
ese	
  término	
  común	
  en	
  todas	
  las	
  expresiones.	
  Nos	
  queda	
  

� 	
  

� 	
  

23 −13 = 3(1)2 + 3(1)+1
33 − 23 = 3(2)2 + 3(2)+1
43 − 33 = 3(3)2 + 3(3)+1
53 − 43 = 3(4)2 + 3(4)+1
!

n3 − (n −1)3 = 3(n −1)2 + 3(n −1)+1
(n +1)3 − n3 = 3n2 + 3n +1

(n +1)3 −1

(n +1)3 −1= 3(12 + 22 + 32 + ...+ n2 )+ 3(1+ 2 + 3+ ...+ n)+ n

1+ 2 + 3+ ...+ n = n(n +1)
2

12 + 22 + 32 + ...+ n2 = S

(n +1)3 −1= 3S + 3n(n +1)
2

+ n

S

S =
(n +1)3 −1− 3n(n +1)

2
− n

3

−1− n = −(n +1)

S =
(n +1) (n +1)2 − 3n

2
−1⎡

⎣⎢
⎤
⎦⎥

3
=
(n +1) 2(n

2 + 2n +1)− 3n − 2
2

⎡
⎣⎢

⎤
⎦⎥

3

=
(n +1) 2n2 + n⎡⎣ ⎤⎦

6
= n(n +1)(2n +1)

6
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que	
  es	
  justo	
  lo	
  que	
  buscábamos.	
  Hemos	
  llegado	
  a	
  que,	
  para	
  cualquier	
  n	
  dado,	
  	
  

� 	
  

Aunque	
   la	
   prueba	
   en	
   sí	
   no	
   es	
   muy	
   complicada,	
   cuando	
   uno	
   ve	
   esta	
   demostración	
   por	
  
primera	
   vez	
   es	
   probable	
   que	
   necesite	
   leerla	
   varias	
   veces	
   para	
   entender	
   qué	
   pasó.	
   El	
  
detalle,	
   como	
   hemos	
  mencionado,	
   es	
   que	
   para	
   crear	
   esta	
   prueba,	
   uno	
   .ene	
   que	
   tener	
  
ideas.	
  Eso	
  es	
  dis.nto	
  con	
  la	
  inducción	
  pues	
  uno	
  ya	
  sabe	
  a	
  qué	
  quiere	
  llegar	
  y	
  ya	
  sabe	
  qué	
  
.ene	
  que	
  hacer.	
  	
  

Usando Inducción 

Vamos	
   a	
   probar	
   la	
  misma	
   relación,	
   esta	
   vez	
   usando	
   inducción.	
   Es	
   necesario	
   ver	
   primero	
  
que	
  cumple	
  para	
  algunos	
  casos.	
  Vamos	
  a	
  hacer	
   los	
  primeros	
  cuatro,	
  aunque	
  bastaría	
  con	
  
uno:	
  

Para	
  � ,	
  tenemos	
  � 	
  y	
  � .	
  

Para	
  � ,	
  tenemos	
  � 	
  y	
  � .	
  

Para	
  � ,	
  tenemos	
  � 	
  y	
  � .	
  

P a r a	
   � ,	
   t e n e m o s	
   � 	
   y	
  

� .	
  

Ya	
  tenemos	
  evidencia	
  de	
  que	
  la	
  relación	
  parece	
  funcionar.	
  Entonces,	
  suponemos	
  que	
  existe	
  
un	
  natural	
  k	
  para	
  el	
  cual	
  

� 	
  

y,	
  usando	
  eso,	
  queremos	
  calcular	
  cuánto	
  vale	
  � .	
  Veamos	
  que	
  

� .	
  

12 + 22 + 32 + ...+ n2 = n(n +1)(2n +1)
6

n = 1 12 = 1 1(1+1)(2(1)+1)
6

1(2)(3)
6

= 1

n = 2 12 + 22 = 1+ 4 = 5 2(2 +1)(2(2)+1)
6

= 2(3)(5)
6

= 5

n = 3 12 + 22 + 32 = 1+ 4 + 9 = 14 3(3+1)(2(3)+1)
6

= 3(4)(7)
6

= 14

n = 4 12 + 22 + 32 + 42 = 1+ 4 + 9 +16 = 40
4(4 +1)(2(4)+1)

6
= 4(5)(9)

6
= 30

12 + 22 + 32 + ...+ k2 = k(k +1)(2k +1)
6

12 + 22 + 32 + ...+ k2 + (k +1)2

12 + 22 + 32 + ...+ k2 + (k +1)2 = k(k +1)(2k +1)
6

+ (k +1)2
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Hemos	
  usado	
  ya	
  nuestra	
  hipótesis	
  de	
   inducción	
  de	
  modo	
  que	
   lo	
  que	
  sigue	
  es	
  simplificar	
  
para	
  obtener	
  la	
  expresión	
  que	
  queremos.	
  	
  

� 	
  

Ahora,	
  	
  veamos	
  que	
  

� 	
  

De	
  donde	
  

� 	
  

que	
   es	
   lo	
   que	
  queríamos	
  obtener.	
   Esto	
   concluye	
   la	
   prueba	
  por	
   inducción.	
  Demostramos	
  
que	
  si	
  se	
  cumple	
  para	
  algún	
  número,	
  debe	
  cumplirse	
  para	
  el	
  siguiente	
  y,	
  además,	
  que	
  se	
  
cumple	
  para	
  los	
  primeros	
  cuatro.	
  Luego,	
  debe	
  cumplirse	
  para	
  todos.	
  	
  

La	
   intención	
   de	
   mostrar	
   las	
   dos	
   pruebas	
   es	
   mostrar	
   cómo	
   las	
   pruebas	
   por	
   inducción	
  
pueden	
  ser	
  mucho	
  más	
  sencillas	
  que	
  una	
  prueba	
  directa.	
  La	
  prueba	
  por	
  inducción	
  necesitó	
  
de	
   sólo	
  una	
   sus.tución	
   y	
  un	
  par	
  de	
  manipulaciones	
   algebraicas,	
  mientras	
  que	
   la	
  prueba	
  
directa	
   no	
   sólo	
   necesitó	
   algunas	
   sus.tuciones	
   más	
   y	
   la	
   misma	
   necesidad	
   de	
  
manipulaciones	
  algebraicas,	
  además	
  par.ó	
  de	
  una	
  idea	
  que	
  es	
  sencillamente	
  brillante.	
  Es	
  
decir:	
  la	
  demostración	
  por	
  inducción	
  la	
  pudimos	
  haber	
  hecho	
  nosotros	
  solos	
  sin	
  problema,	
  
la	
  prueba	
  directa	
  necesitamos	
  que	
  alguien	
  nos	
  pla.cara	
  la	
  idea	
  inicial.	
  	
  

¿Cuál	
  es	
  más	
  sencilla?	
  Tú	
  lo	
  decides.	
  Ahora	
  que	
  sabes	
  cuál	
  es	
  esa	
  “idea	
  genial”	
  de	
  la	
  que	
  
hablamos,	
  seguro	
  puedes	
  usarla	
  para	
  otras	
  fórmulas	
  similares.	
  Lo	
  que	
  hemos	
  llamado	
  “el	
  
lado	
  bueno	
  de	
   la	
   inducción”	
   lo	
   resumimos	
  en	
  un	
  par	
  de	
  puntos:	
   (1)	
   con	
   la	
   inducción	
   ya	
  
sabes	
  qué	
  quieres	
  demostrar,	
   (2)	
  con	
   la	
   inducción	
  ya	
  sabes	
  qué	
  .enes	
  que	
  hacer.	
   Juntos,	
  
saber	
  qué	
  quiero	
  demostrar	
  y	
  saber	
  qué	
  tengo	
  que	
  hacer	
  para	
  demostrarlo	
  pueden	
  hacer	
  
que	
  la	
  prueba	
  sea	
  muy	
  sencilla.	
  	
  

k(k +1)(2k +1)
6

+ (k +1)2 = (k +1) k(2k +1)+ 6(k +1)
6

⎡
⎣⎢

⎤
⎦⎥

k(2k +1)+ 6(k +1) = 2k2 + k + 6k + 6
= (2k2 + 4k)+ (3k + 6) = 2k(k + 2)+ 3(k + 2) = (k + 2)(2k + 3)

12 + 22 + 32 + ...+ (k +1)2 = (k +1)(k + 2)(2k + 3)
6
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El lado oscuro de la inducción 

Por	
  muy	
  poderosa	
  que	
  parezca,	
  la	
  inducción	
  no	
  es	
  infalible	
  ni	
  su	
  aplicación	
  es	
  tan	
  mecánica	
  
como	
   los	
   ejercicios	
   revisados	
   nos	
   podrían	
   hacer	
   creer.	
   Empezamos	
   tratando	
   de	
  mostrar	
  
puntos	
   más	
   o	
   menos	
   sencillos	
   de	
   superar:	
   lo	
   que	
   sucede	
   cuando	
   se	
   cumple	
   el	
   paso	
  
induc.vo	
  pero	
  no	
  encontramos	
   caso	
  base;	
   de	
   cuándo	
   la	
   inducción	
  no	
  es	
   el	
   camino	
  más	
  
sencillo	
   a	
   la	
   solución;	
   de	
   cómo	
   una	
   inducción,	
   incluso	
   si	
   es	
   el	
   camino	
   adecuado,	
   puede	
  
requerir	
  mucho	
  trabajo;	
  lo	
  que	
  sucede	
  cuando	
  hay	
  muchos	
  ejemplos	
  que	
  cumplen	
  pero	
  el	
  
paso	
  induc.vo	
  es	
  esencialmente	
  imposible.	
  	
  

Por	
  supuesto,	
  no	
  pretendemos	
  alejarte	
  de	
  la	
  idea	
  de	
  que	
  la	
  Inducción	
  es	
  una	
  herramienta	
  
sumamente	
   fuerte	
   y	
   ú.l	
   porque	
   lo	
   es.	
   Pero	
   sí	
   queremos	
   que	
   tengas	
   cuidado:	
   con	
   gran	
  
poder	
  viene	
  gran	
  responsabilidad.	
  	
  

No hay caso base 

Queremos	
  demostrar	
  que	
  � 	
  para	
  todo	
  n	
  natural.	
  Sí,	
  exactamente	
  eso	
  que	
  acabas	
  de	
  
leer:	
   queremos	
   demostrar	
   que	
   cada	
   número	
   es	
   igual	
   a	
   su	
   siguiente	
   que,	
   naturalmente,	
  
implicaría	
  que	
  todos	
  los	
  naturales	
  son	
  iguales.	
  

Sin	
  embargo,	
  vamos	
  a	
  cambiar	
  el	
  orden	
  en	
  el	
  que	
  hacemos	
  la	
  demostración	
  sencillamente	
  
para	
  agregar	
  algo	
  de	
  suspenso.	
  Vamos	
  a	
  realizar	
  primero	
  el	
  paso	
  induc.vo:	
  probar	
  que	
  si	
  
cumple	
  para	
  un	
  entero	
  k,	
  entonces	
  cumple	
  para	
  el	
  entero	
  k	
  +	
  1.	
  	
  

Queremos	
  demostrar	
  que	
   � 	
   sabiendo	
  que	
   � .	
  Puesto	
  que	
   � 	
   se	
  sigue	
  
de	
  las	
  propiedades	
  de	
  la	
  igualdad	
  como	
  relación	
  de	
  equivalencia,	
  no	
  tenemos	
  problema	
  en	
  
afirmar	
  que	
  	
  

� 	
  

que	
  es	
  lo	
  que	
  queríamos	
  demostrar.	
  	
  

Acabamos	
  de	
  mostrar	
  que	
  si	
  existe	
  algún	
  entero	
  que	
  cumple,	
  entonces	
  todos	
   los	
  enteros	
  
después	
   de	
   ese	
   también	
   cumplen.	
   Es	
   decir,	
   si	
   un	
   solo	
   número	
   fuera	
   igual	
   al	
   siguiente,	
  
todos	
  serían	
  iguales	
  entre	
  sí.	
  	
  

Dado	
  que	
   � 	
  y,	
  por	
  las	
  propiedades	
  de	
  la	
  igualdad,	
  podemos	
  ver	
  que	
  lo	
  que	
  encontrar	
  
un	
  número	
  que	
  sa.sfaga	
  lo	
  anterior	
  es	
  equivalente	
  a	
  demostrar	
  que	
  

n = n +1

k +1= k + 2 k = k +1 1= 1

k = k +1⇒ k +1= k +1+1= k + 2

x = x
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� 	
  

lo	
  que	
  sabemos	
  es	
  falso.	
  	
  

Queremos	
  enfa.zar	
  el	
   cuidado	
  que	
  se	
  .ene	
  que	
   tener	
  con	
   la	
   inducción:	
  hemos	
  probado	
  
que	
  si	
  un	
  dominó	
  se	
  cae,	
  sin	
  duda	
  empujará	
  a	
  todos	
  los	
  demás;	
  el	
  detalle	
  es	
  que	
  no	
  existe	
  
un	
  solo	
  dominó	
  que	
  se	
  caiga.	
  	
  

El camino más corto 

Cuando	
  trabajamos	
  sobre	
  el	
  lado	
  más	
  amable	
  de	
  la	
  inducción,	
  vimos	
  cómo	
  la	
  prueba	
  por	
  
inducción	
   puede	
   hacer	
   que	
   ciertas	
   pruebas	
   directas	
   se	
   vean	
   como	
   exageradamente	
  
complicadas	
  y	
  largas.	
  Sin	
  embargo,	
  esto	
  depende	
  de	
  cada	
  problema.	
  Lo	
  que	
  queremos	
  ver	
  
ahora	
  es	
  que	
  un	
  problema	
  que	
  puede	
  resolverse	
  de	
  maneras	
  bastante	
  sencillas	
  y	
  directas	
  
con	
  otros	
  métodos	
  y	
  argumentos,	
  usando	
  inducción	
  se	
  vuelve	
  un	
  camino	
  largo.	
  	
  

Queremos	
   demostrar	
   que	
   � 	
   para	
   todo	
   n	
   natural,	
   es	
   decir,	
   que	
   � 	
   es	
   un	
  
múl.plo	
  de	
  6	
  para	
  todos	
  los	
  valores	
  de	
  n	
  naturales.	
  	
  

Para	
  proceder	
  por	
  inducción,	
  debemos	
  primero	
  encontrar	
  un	
  caso	
  base.	
  Es	
  claro	
  que	
  con	
  1	
  
cumple	
  pues	
  1	
  —	
  1	
  =	
  0	
  que	
  es	
  múl.plo	
  de	
  6.	
  Ahora,	
  queremos	
  demostrar	
  que	
  si	
  � 	
  es	
  
un	
  múl.plo	
  de	
  6,	
  entonces	
  � 	
  también	
  lo	
  es.	
  	
  

� 	
  

Usando	
   la	
   hipótesis	
   de	
   inducción,	
   como	
   � ,	
   lo	
  

anterior	
   es	
   múl.plo	
   de	
   6	
   si	
   y	
   solo	
   si	
   � también	
   es	
   múl.plo	
   de	
   6.	
   ¿Cómo	
  
demostramos	
  eso?	
  Bueno,	
  pues	
  haciendo	
  una	
  segunda	
  inducción	
  —una	
  inducción	
  adentro	
  
de	
  una	
  inducción.	
  	
  

No	
  siendo	
  tan	
  estrictos,	
  podemos	
  ver	
  que	
  claramente	
  � 	
  es	
  múl.plo	
  de	
  3,	
  de	
  modo	
  
que	
  para	
  asegurar	
  que	
  es	
  múl.plo	
  de	
  6	
  bastaría	
  con	
  demostrar	
  que	
   � 	
  es	
  un	
  número	
  
par.	
  Esa	
  será	
  la	
  afirmación	
  que	
  queremos	
  probar	
  usando	
  inducción.	
  	
  

Es	
   claro	
   que	
   1	
   +	
   1	
   es	
   un	
   número	
   par	
   así	
   que	
   1	
   es	
   nuestra	
   base	
   de	
   inducción.	
   Ahora,	
  
queremos	
  demostrar	
  que	
  � 	
  es	
  un	
  número	
  par	
  si	
  � 	
  lo	
  es.	
  	
  

� 	
  

Usando	
  la	
  hipótesis	
  de	
   inducción,	
  sabeos	
  que	
   � 	
  es	
  par	
  por	
   lo	
  que	
   � 	
  es	
  
par	
  si	
  y	
  solo	
  si	
  � 	
  es	
  par	
  que	
  claramente	
  lo	
  es.	
  Esto	
  concluye	
  la	
  inducción	
  que,	
  a	
  su	
  vez,	
  
concluye	
  la	
  inducción	
  original.	
  	
  

x = x +1⇔ 0 = 1

n3 − n = 6k n3 − n

n3 − n
(n +1)3 − (n +1)

(n +1)3 − (n +1) = 6k⇔ n3 + 3n2 + 3n +1− n −1= 6k

n3 + 3n2 + 3n +1− n −1= (n3 − n)+ 3n2 + 3n

3n2 + 3n

3n2 + 3n
n2 + n

(n +1)2 + (n +1) n2 + n

(n +1)2 + (n +1) = n2 + 2n +1+ n +1= n2 + n + 2n + 2

n2 + n n2 + n + 2n + 2
2n + 2
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Si	
  nos	
  hubiésemos	
  decidido	
  por	
  un	
  método	
  más	
  directo,	
  por	
  ejemplo,	
  usando	
  congruencias	
  
módulo	
  6,	
  la	
  demostración	
  se	
  acaba	
  en	
  seis	
  líneas:	
  

� 	
  

Pues,	
  demostrado	
  para	
  las	
  seis	
  congruencias	
  módulo	
  6,	
  queda	
  demostrado	
  para	
  todos	
  los	
  
naturales.	
  Esto	
  demuestra	
  que	
  efec.vamente	
  � 	
  es	
  múl.plo	
  de	
  6	
  para	
  todo	
  n.	
  	
  

Sin	
  embargo,	
  una	
  sencilla	
  factorización:	
  

� 	
  

nos	
  deja	
  ver	
  que	
   � 	
  es	
  el	
  producto	
  de	
  tres	
  enteros	
  consecu.vos	
  donde	
  al	
  menos	
  uno	
  
es	
   par	
   y	
   otro	
   es	
   múl.plo	
   de	
   3,	
   por	
   lo	
   que	
   el	
   resultado	
   de	
   la	
   mul.plicación	
   es	
  
necesariamente	
  múl.plo	
  de	
  6.	
  	
  

Estos	
  dos	
  caminos	
  fueron	
  mucho	
  más	
  rápidos	
  que	
  la	
  inducción.	
  Sin	
  embargo,	
  tampoco	
  hay	
  
que	
  olvidar	
  que	
  la	
  inducción	
  efec.vamente	
  demostró	
  el	
  problema	
  que	
  queríamos.	
  	
  

Los límites de la inducción 

Hasta	
  ahora,	
  es	
  posible	
  que	
  creas	
  que	
  la	
  inducción,	
  si	
  acaso	
  .ene	
  ciertos	
  detalles	
  a	
  los	
  que	
  
hay	
   que	
   ponerle	
  mucha	
   atención,	
   es	
   una	
   herramienta	
  muy	
   poderosa	
   al	
   grado	
   de	
   creer	
  
infalible:	
   todo	
  se	
  puede	
  demostrar	
  con	
   inducción	
  si	
  pudiéramos	
  plantear	
   la	
   inducción	
  de	
  
manera	
   adecuada.	
   Incluso	
   acotando	
   la	
   anterior	
   afirmación	
   para	
   incluir	
   únicamente	
  
propiedades	
  de	
  los	
  números	
  naturales,	
  es	
  necesario	
  entender	
  que	
  la	
  Inducción	
  no	
  es	
  una	
  
herramienta	
  omnipotente.	
  El	
  caso	
  que	
  vamos	
  a	
  estudiar	
  es	
  sobre	
  los	
  números	
  primos.	
  Es	
  
más	
  o	
  menos	
  sabido	
  que	
  no	
  existe	
  una	
   función	
  polinómica	
  o	
   trigonométrica	
  que	
  genere	
  
puros	
   números	
   primos.	
   Aunque	
   es	
   claro	
   que	
   existen	
   sucesiones	
   con	
   infinitos	
   números	
  
primos,	
   ninguna	
   sucesión	
   infinita	
   que	
   podamos	
   describir	
   con	
   una	
   fórmula	
   —y	
   no,	
   por	
  
ejemplo,	
   diciendo	
   “la	
   sucesión	
   de	
   los	
   números	
   primos”—	
  está	
   formada	
   únicamente	
   por	
  
números	
  primos.	
  	
  

Queremos	
  demostrar	
  la	
  siguiente	
  afirmación:	
   � 	
  es	
  un	
  número	
  primo	
  para	
  
todo	
  n	
  natural.	
  Ya	
  hemos	
  probado	
  que	
  fórmulas	
  similares	
  arrojan	
  puros	
  múl.plos	
  de	
  2	
  o	
  

03 − 0 ≡6 0
13 −1≡6 0
23 − 2 ≡6 8 − 2 ≡6 0
33 − 3≡6 27 − 3≡6 0
43 − 4 ≡6 64 − 4 ≡6 0
53 − 5 ≡6 125 − 5 ≡6 0

n3 − n

n3 − n = n(n2 −1) = (n −1)n(n +1)

n3 − n

f (n) = n2 + n + 41

�22



múl.plos	
   de	
   13,	
   por	
   lo	
   que	
   no	
   suena	
   descabellado	
   poder	
   demostrar	
   algo	
   así	
   usando	
  
inducción.	
  

Para	
   tratar	
   de	
   convencernos	
   —o	
   al	
   menos	
   sorprendernos—	
   acerca	
   de	
   la	
   verdad	
   de	
   la	
  
anterior	
  afirmación,	
  vamos	
  a	
  hacer	
  una	
   importante	
  can.dad	
  de	
  casos	
  base,	
  muchos	
  más	
  
que	
  el	
  único	
  caso	
  base	
  que	
  normalmente	
  nos	
  basta	
  encontrar.	
  

� 	
  

Hasta	
   ahora ,	
   la	
   fórmula	
   ha	
   arrojado	
   sólo	
   números	
   primos	
   por	
   lo	
   que	
   tenemos	
  —hasta	
  4

ahora—	
  algo	
  de	
  evidencia	
  para	
  suponer	
  que	
  quizás	
  pueda	
  ser	
  cierta,	
  además	
  de	
  algo	
  de	
  
sorpresa.	
  Como	
  quisiéramos	
  probarla	
  para	
  todos	
  los	
  números,	
   la	
   inducción	
  es	
  una	
  buena	
  
manera	
  de	
  proceder.	
  	
  

Usando	
  Inducción,	
  queremos	
  demostrar	
  que	
  si	
   � 	
  es	
  un	
  número	
  primo,	
  entonces	
  
� 	
  también	
  es	
  un	
  número	
  primo.	
  	
  

Lo	
  que	
  podemos	
  pensar	
  es	
  desarrollar	
  el	
   cuadrado	
  para	
  poder	
  usar	
  nuestra	
  hipótesis	
  de	
  
inducción.	
  Es	
  decir,	
  si	
  decimos	
  que	
  � ,	
  entonces	
  

� 	
  

¿Qué	
  hacemos	
  ahora?	
  ¿Existe	
  alguna	
  manera	
  de	
  demostrar	
  que	
  esa	
  úl.ma	
  expresión	
  es	
  un	
  
primo?	
   Podríamos	
   intentar	
   ver	
   que	
   no	
   es	
   posible	
   factorizarla	
   como	
   producto	
   de	
   dos	
  

f (1) = 12 +1+ 41= 43
f (2) = 22 + 2 + 41= 47
f (3) = 32 + 3+ 41= 53
f (4) = 42 + 4 + 41= 61
f (5) = 52 + 5 + 41= 71
f (6) = 62 + 6 + 41= 83
f (7) = 72 + 7 + 41= 97
f (8) = 82 + 8 + 41= 113
f (9) = 92 + 9 + 41= 131
f (10) = 102 +10 + 41= 151
f (11) = 112 +11+ 41= 173
f (12) = 122 +12 + 41= 197
f (13) = 132 +13+ 41= 223
f (14) = 142 +14 + 41= 251
f (15) = 152 +15 + 41= 281

n2 + n + 41
(n +1)2 + (n +1)+ 41

n2 + n + 41= p

(n +1)2 + (n +1)+ 41= n2 + 2n +1+ n +1+ 41= p + 2n + 42

 Diviértete un rato encontrando todos los valores que arrojan un número primo, al menos, responde: 4

¿cuál es el primero que no lo hace?
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expresiones	
   dis.ntas	
   de	
   1.	
   ¿Cómo	
   hacemos	
   eso?	
   ¿Es	
   posible	
   hacer	
   eso?	
   Ojalá	
   que	
   no,	
  
puesto	
  que	
  para	
  41,	
  tenemos	
  � 	
  que	
  claramente	
  es	
  múl.plo	
  de	
  41	
  y	
  por	
  
lo	
  tanto	
  no	
  es	
  primo.	
  	
  

Queremos	
   recalcar	
   aquí	
   que	
   la	
   inducción	
   no	
   es	
   todopoderosa.	
   En	
   par.cular,	
   las	
  
expresiones	
   con	
  números	
  primos	
  escapan	
  muy	
   sencillamente	
  de	
   las	
   capacidades	
  de	
  una	
  
prueba	
   por	
   inducción,	
   puesto	
   que	
   los	
   primos	
   no	
   están	
   todos	
   sobre	
   alguna	
   progresión	
  
aritmé.ca	
  o	
  geométrica	
  conocida	
  –incluso	
  si	
  se	
  conocen	
  varias	
  progresiones	
  que	
  con.enen	
  
infinitos	
  primos	
  sobre	
  ellas.	
  	
  

Pensemos	
  nada	
  más	
  que	
  si	
  la	
  inducción	
  no	
  tuviera	
  límites,	
  problemas	
  como	
  la	
  Conjetura	
  de	
  
Goldbach	
  no	
  habría	
  escapado	
  a	
  su	
  solución	
  por	
  casi	
  trescientos	
  años.	
  	
  

f (41) = 412 + 41+ 41
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Ejercicios 

Prueba	
   por	
   inducción	
   las	
   siguientes	
   proposiciones.	
   Para	
   algunos	
   de	
   ellos	
   es	
   posible	
  
encontrar	
  una	
  demostración	
  no	
   induc.va.	
  Todos	
  estos	
  ejercicios	
  son	
  ya	
  sea	
  de	
   fórmulas,	
  
igualdades	
  o	
  bien,	
  de	
  divisibilidad.	
  	
  

Ejercicio	
  1.	
  � .	
  	
  

Ejercicio	
  2.	
  � .	
  	
  

Ejercicio	
  3.	
  � .	
  

Ejercicio	
  4.	
  � .	
  	
  

Ejercicio	
  5.	
  � .	
  	
  

Ejercicio	
  6.	
  � .	
  

Ejercicio	
  7.	
  8	
  divide	
  a	
  � 	
  para	
  todo	
  � .	
  	
  

Ejercicio	
  8.	
  	
  35	
  divide	
  a	
  � 	
  para	
  todo	
  � .	
  

Ejercicio	
  9.	
  9	
  divide	
  a	
  � 	
  para	
  todo	
  � .	
  

Ejercicio	
  10.	
  60	
  divide	
  a	
  � 	
  para	
  todo	
  � .	
  

Ejercicio	
  11.	
  17	
  divide	
  a	
  � 	
  para	
  todo	
  � .	
  

Ejercicio	
  12.	
  9	
  divide	
  a	
  � 	
  para	
  todo	
  � .	
  

Ejercicio	
  13.	
  � .	
  

Ejercicio	
  14.	
  Propón	
  y	
  demuestra	
  el	
  resultado	
  de	
  la	
  siguiente	
  suma	
  en	
  términos	
  de	
  n:	
  

� .	
  

2 + 4 + 6 + ...+ 2n = n(n +1)

12 + 32 + 52 + ...+ (2n −1)2 = n(2n −1)(2n +1)
3

13 + 23 + 33 + ...+ n3 = n(n +1)
2

⎡
⎣⎢

⎤
⎦⎥

2

14 + 24 + 34 + ...+ n4 = n(n +1)(6n
3 + 9n2 + n −1)
30

1+ 2 + 4 + 8 +16 + ...+ 2n = 2n+1 −1

1+ x + x2 + ...+ xn = xn+1 −1
x −1

32n −1 n∈Ν

62n −1 n∈Ν

n3 + (n +1)3 + (n + 2)3 n∈Ν

n2 (n4 −1) n∈Ν

25n+3 + 5n ⋅3n+2 n∈Ν

4n +15n −1 n∈Ν

4 + 3⋅4 + 3⋅42 +!+ 3⋅4n = 4n+1

1
1⋅2

+ 1
2 ⋅3

+!+ 1
n(n +1)
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Ejercicio	
  15.	
  Propón	
  y	
  demuestra	
  el	
  resultado	
  de	
  la	
  siguiente	
  suma	
  en	
  términos	
  de	
  n:	
  

� .	
  

Ejercicio	
  16.	
  � .	
  	
  

Ejercicio	
  17.	
  � .	
  	
  

Ejercicio	
  18.	
  Demuestra	
  que	
  � 	
  es	
  un	
  entero	
  para	
  � 	
  

Ejercicio	
  19.	
  Demuestra 	
  que	
  5

� 	
  

Ejercicio	
  20.	
  Pequeño	
  Teorema	
  de	
  Fermat.	
  Demuestra	
  que	
  � ,	
  donde	
  p	
  es	
  un	
  número	
  
primo,	
  es	
  divisible	
  entre	
  p	
  para	
  todo	
  natural	
  a.	
  	
  

1
2!
+ 1
3!
+!+ n

(n +1)!

1(1!)+ 2(2!)+!+ n(n!) = (n +1)!−1

(15 + 25 +!+ n5 )+ (17 + 27 +!+ n7 ) = 2(1+ 2 +!+ n)4

n5

5
+ n

4

2
+ n

3

3
− n
30

n = 0,1,2,...

n
0

⎛
⎝⎜

⎞
⎠⎟
+ n

1
⎛
⎝⎜

⎞
⎠⎟
+ n

2
⎛
⎝⎜

⎞
⎠⎟
+!+ n

n
⎛
⎝⎜

⎞
⎠⎟
= 2n

ap − a

 Una de las demostraciones no-inductivas de esta proposición es la que conocemos como “La 5

hamburguesa de JoséRa”. Consiste en pensar en las maneras en que uno puede ordenar una 
hamburguesa en un puesto que ofrece n ingredientes. Por un lado, lo calculamos como la suma de las 
maneras de elegir cada cantidad posible de ingredientes; por el otro, lo calculamos usando regla del 
producto suponiendo que los ingredientes están ordenados y que una hamburguesa se define como una 
sucesión de SÍ y NO. Esta demostración es la prueba no-inductiva del ejercicio anterior. 
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La otra inducción 

Hasta	
  ahora	
  hemos	
  usado	
  la	
  inducción	
  para	
  probar	
  esencialmente	
  dos	
  .pos	
  de	
  problemas:	
  
los	
   que	
   llamamos	
   “fórmulas”,	
   que	
   son	
   igualdades	
   en	
   sumas	
   grandes	
   que	
   dependen	
   de	
  
alguna	
   variable	
   y	
   cuya	
   verdad	
   demostramos	
   que	
   no	
   depende	
   del	
   valor	
   elegido,	
   y	
  
problemas	
  de	
  divisibilidad	
  donde	
  queremos	
  mostrar	
  que	
  una	
  expresión	
  dada	
  en	
  función	
  de	
  
algún	
   natural	
   es	
   siempre	
   múl.plo	
   de	
   algún	
   número	
   dado	
   sin	
   importar	
   el	
   valor	
   de	
   la	
  
variable.	
   Lo	
  que	
  queremos	
  hacer	
  ahora	
  es	
  mostrar	
  que	
   la	
   inducción	
  puede	
  ser	
  usada	
  en	
  
otros	
  escenarios,	
  problemas	
  más	
  “abiertos”	
  donde	
  no	
  estemos	
  usando	
  fórmulas	
  y,	
  a	
  veces,	
  
ni	
   siquiera	
   números.	
   Lo	
   que	
   quisimos	
   en	
   esta	
   sección	
   fue	
   recopilar	
   problemas	
   que	
  
necesitaran	
  más	
  palabras	
  o	
  dibujos	
  que	
  nada	
  más	
  simplificación	
  algebraica.	
  

Hay	
  que	
  tener	
  bien	
  claro	
  que	
   la	
   inducción	
   funciona	
  cuando	
  ya	
  .enes	
  una	
  buena	
   idea	
  de	
  
qué	
   quieres	
   demostrar,	
   cuando	
   .enes	
   cierta	
   noción	
   o	
   evidencia	
   de	
   que	
   lo	
   que	
   quieres	
  
demostrar	
   es	
   cierto	
   y	
   solo	
   te	
   falta	
   —nada	
   más—	
   una	
   manera	
   de	
   probarlo.	
   En	
   esos	
  
problemas,	
  la	
  Inducción	
  Matemá.ca	
  puede	
  ser	
  tu	
  mejor	
  amiga.	
  	
  

Ángulos interiores de un polígono 

Vamos	
   a	
   demostrar,	
   usando	
   inducción,	
   que	
   la	
   suma	
   de	
   los	
   ángulos	
   interiores	
   de	
   un	
  
polígono	
  convexo	
  de	
  n	
  lados	
  es	
  � .	
  Algunas	
  de	
  las	
  formas	
  tradicionales	
  de	
  hacerlo	
  
son	
  sumamente	
  directas	
  y	
  parten	
  de	
  un	
  polígono	
  general	
  de	
  n	
  lados	
  que	
  se	
  triangula.	
  Esta	
  
idea	
  no	
  está	
  demasiado	
  lejos	
  de	
  la	
  manera	
  induc.va.	
  	
  

En	
  la	
  inducción,	
  necesitamos	
  un	
  caso	
  base.	
  Ese	
  caso	
  es	
  el	
  triángulo	
  —el	
  menor	
  polígono—,	
  
que	
  necesitaríamos	
  demostrar	
  que	
  la	
  suma	
  de	
  sus	
  ángulos	
  interiores	
  es	
  

� 	
  

que	
  es	
  cierto .	
  Sabiendo	
  eso,	
  queremos	
  demostrar	
  que	
   la	
  suma	
  de	
   los	
  ángulos	
   interiores	
  6

de	
  un	
  un	
  (n+1)—ágono	
  convexo	
  es	
   � ,	
  sabiendo	
  que	
   la	
  suma	
  de	
   los	
  ángulos	
  
interiores	
  de	
  un	
  n—ágono	
  convexo	
  es	
  � .	
  	
  

180(n − 2)

180(n − 2) = 180(3− 2) = 180

180((n +1)− 2)
180(n − 2)

 Esto se puede demostrar de muchas maneras aunque necesita los supuestos de que o bien una línea 6

mide 180 grados, o bien, un círculo mide 360, entre otros postulados de geometría. Esas demostraciones 
—y decidir cuál viene primero— no las trataremos aquí. 
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Así,	
   ahora	
   que	
   sabemos	
   que	
   la	
   suma	
   de	
   los	
   ángulos	
   interiores	
   de	
   un	
   triángulo	
   es	
   180	
  
grados,	
   suponemos	
   que	
   la	
   suma	
   de	
   ángulos	
   interiores	
   de	
   un	
   n—ágono	
   convexo	
   es	
  
� 	
  y	
  usaremos	
  eso	
  para	
  demostrar	
  que	
  la	
  suma	
  de	
  los	
  ángulos	
  interiores	
  de	
  un	
  (n
+1)—ágono	
  convexo	
  es	
  � .	
  	
  

Tomemos	
  nuestro	
  (n+1)—ágono	
  convexo.	
  Se	
  ve	
  más	
  o	
  menos	
  así:	
  

� 	
  

Lo	
  que	
  vamos	
  a	
  hacer	
  es	
  trazar	
  una	
  recta	
  que	
  una	
  dos	
  vér.ces	
  no	
  consecu.vos,	
  de	
  modo	
  
que	
  nos	
  quede	
  un	
  n—ágono	
  convexo	
  con	
  un	
  triángulo	
  pegado.	
  Es	
  importante	
  notar	
  que	
  
todos	
  los	
  ángulos	
  interiores	
  del	
  (n+1)—ágono	
  convexo	
  siguen	
  ahí:	
  todos	
  excepto	
  dos	
  
quedan	
  completo	
  y	
  esos	
  dos	
  se	
  han	
  dividido	
  entre	
  el	
  triángulo	
  y	
  el	
  polígono	
  menor.	
  	
  

� 	
  

Por	
   hipótesis	
   de	
   inducción,	
   la	
   suma	
   de	
   los	
   ángulos	
   interiores	
   del	
   n—ágono	
   convexo	
   es	
  
� .	
   Además,	
   el	
   triángulo	
   fue	
   nuestro	
   caso	
   base,	
   de	
   modo	
   que	
   sabemos	
   que	
   la	
  
suma	
   de	
   sus	
   ángulos	
   interiores	
   es	
   180.	
   Como	
   sabemos	
   que	
   la	
   suma	
   de	
   los	
   ángulos	
  
interiores	
   de	
   nuestro	
   polígono	
   es	
   igual	
   a	
   la	
   suma	
   de	
   los	
   ángulos	
   interiores	
   de	
   los	
   dos	
  
polígonos	
  en	
  que	
  dividimos	
  la	
  figura,	
  la	
  suma	
  debe	
  ser	
  

� 	
  

que	
  es	
  lo	
  que	
  queríamos	
  demostrar.	
  

180(n − 2)
180((n +1)− 2)

180(n − 2)

180(n − 2)+180 = 180(n − 2 +1) = 180((n +1)− 2)

�28



Diagonales de un polígono 

Un	
  ejercicio	
  similar	
  al	
  anterior	
  pide	
  calcular	
  la	
  can.dad	
  de	
  diagonales	
  de	
  un	
  polígono	
  de	
  n	
  
vér.ces	
  —y,	
   por	
   lo	
   tanto,	
   de	
  n	
   lados—.	
   En	
   este	
   ejercicio,	
   consideramos	
   los	
   lados	
   como	
  
diagonales,	
  de	
  modo	
  que	
  este	
  problema	
  es	
   idén.co	
  a	
   calcular	
   la	
   can.dad	
  de	
   rectas	
  que	
  
determinan	
  n	
  puntos	
  no	
  colineales	
  en	
  el	
  plano.	
  	
  

Queremos	
  demostrar	
  que	
  la	
  can.dad	
  de	
  diagonales	
  de	
  un	
  polígono	
  de	
  n	
  lados,	
  donde	
  los	
  

lados	
   cuentan	
   como	
   diagonales,	
   es	
   igual	
   a	
   � .	
   Por	
   supuesto,	
   existen	
   otro	
   .po	
   de	
  

pruebas	
   directas	
   que,	
   además	
   de	
   demostrar	
   que	
   ésta	
   es	
   la	
   can.dad	
   de	
   diagonales,	
  
construyen	
  la	
  fórmula	
  en	
  el	
  proceso	
  de	
  demostración .	
  Procedemos	
  por	
  inducción.	
  	
  7

El	
  caso	
  base	
  es,	
  de	
  nuevo,	
  un	
  triángulo,	
  que	
  es	
  nuestro	
  menor	
  polígono.	
  No	
  es	
  diqcil	
  ver	
  
que,	
  en	
  el	
  caso	
  del	
  triángulo,	
  las	
  diagonales	
  son	
  únicamente	
  los	
  lados	
  y	
  que	
  

� 	
  

de	
  modo	
  que	
  la	
  fórmula	
  funciona	
  para	
  un	
  triángulo.	
  	
  

Ahora,	
  queremos	
  demostrar	
  que	
  la	
  can.dad	
  de	
  diagonales	
  de	
  un	
  (n+1)—ágono	
  es	
  � 	
  

sabiendo	
  que	
  la	
  can.dad	
  de	
  diagonales	
  de	
  un	
  n—ágono	
  es	
   � .	
  Teniendo	
  nuestro	
  (n

+1)—ágono	
  dibujado,	
  tomamos	
  un	
  punto	
  para	
  aislarlo	
  del	
  resto.	
  Lo	
  que	
  nos	
  queda	
  es	
  un	
  n
—ágono	
  y	
  un	
  punto.	
   Trazamos	
   todas	
   las	
  diagonales	
  del	
  n—ágono,	
  que	
   son	
  exactamente	
  

� 	
  por	
  hipótesis	
  de	
  inducción.	
  	
  

� 	
  

n(n −1)
2

3= n(n −1)
2

= 3(2)
2

= 3

(n +1)n
2

n(n −1)
2

n(n −1)
2

 Una demostración mucho muy directa es notar que para trazar una recta basta con elegir dos puntos. 7

Luego, la cantidad de rectas entre n puntos no colineales debe ser igual a la cantidad de maneras de 
elegir dos de esos puntos. 
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Para	
  contar	
  todas	
  las	
  diagonales	
  del	
  (n+1)—ágono,	
  falta	
  únicamente	
  contar	
  las	
  diagonales	
  
que	
  salen	
  desde	
  el	
  punto	
  que	
  aislamos	
  del	
   resto.	
  De	
  ese	
  punto	
  sale	
  una	
  diagonal	
  a	
  cada	
  
uno	
  de	
  los	
  restantes	
  n	
  puntos,	
  es	
  decir,	
  n	
  diagonales	
  adicionales	
  en	
  total.	
  

� 	
  	
  

Tenemos	
  

� 	
  

que	
  es	
  lo	
  que	
  queríamos	
  tener.	
  	
  

Esto	
  concluye	
  la	
  prueba	
  por	
  inducción.	
  	
  

n(n −1)
2

+ n = n
2 − n
2

+ 2n
2

= n
2 + n
2

= n(n +1)
2
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Problemas 

Te	
  dejamos	
  una	
  lista	
  de	
  problemas	
  que	
  pueden	
  demostrarse	
  usando	
  inducción	
  matemá.ca	
  
y	
  cuyo	
  planteamiento	
  es	
  dis.nto	
  a	
  los	
  problemas	
  de	
  la	
  sección	
  anterior.	
  	
  

Problema	
  1.	
  Demuestra	
  que	
  un	
  conjunto	
  de	
  n	
  elementos	
  .ene	
  � 	
  subconjuntos.	
  

Problema	
  2.	
  Demostrar	
  que	
  un	
  tablero	
  de	
   � 	
  al	
  que	
   le	
   falta	
  un	
  cuadrito	
  puede	
  
ser	
  cubierto	
  totalmente	
  con	
  triminós	
  en	
  forma	
  de	
  L.	
  	
  

Problema	
  3.	
  Demostrar	
  que	
  n	
  rectas	
  en	
  el	
  plano,	
  tales	
  que	
  dos	
  cualesquiera	
  de	
  ellas	
  no	
  son	
  
paralelas	
  y	
  tres	
  cualesquiera	
  de	
  ellas	
  no	
  .enen	
  un	
  punto	
  en	
  común,	
  determinan	
  un	
  mapa	
  
coloreable	
  con	
  dos	
  colores.	
  

Problema	
  4.	
  Sea	
  n	
  un	
  entero	
  posi.vo.	
  Demuestra	
  que	
  el	
  número	
   � 	
  .ene	
  al	
  menos	
  n	
  
factores	
  primos	
  dis.ntos.	
  	
  

2n

22014 × 22014

22
n

−1
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Soluciones 

Los	
   problemas	
   que	
   propusimos	
   en	
   la	
   sección	
   anterior	
   nos	
   gustan	
   tanto	
   que	
   no	
   nos	
  
aguantamos	
   las	
   ganas	
   de	
   escribir	
   las	
   soluciones.	
   Por	
   supuesto,	
   además	
   de	
   la	
   solución,	
  
escribimos	
  todo	
  como	
  si	
  fuera	
  una	
  importante	
  lección	
  de	
  vida.	
  Si	
  le	
  quitas	
  nuestro	
  sermón	
  
y	
  consejos,	
  la	
  solución	
  es	
  bastante	
  más	
  breve.	
  	
  

Problema	
  1.	
  Recordamos	
  que	
  el	
  vacío	
  y	
  el	
  todo	
  son	
  subconjuntos	
  de	
  todo	
  conjunto.	
  	
  

Un	
  conjunto	
  de	
  1	
  elemento	
  .ene	
  dos	
  subconjuntos:	
  el	
  vacío	
  y	
  el	
  todo.	
  Un	
  conjunto	
  de	
  2	
  
elementos	
   .ene	
   cuatro	
   subconjuntos:	
   el	
   vacío,	
   el	
   todo,	
   el	
   subconjunto	
   con	
   el	
   primer	
  
elemento	
  y	
  el	
  subconjunto	
  con	
  el	
  segundo	
  elemento.	
  	
  

Supongamos	
   que	
   un	
   conjunto	
   de	
   k	
   elementos	
   .ene	
   � 	
   subconjuntos.	
   Si	
   agregamos	
   un	
  
elemento	
  nuevo	
  al	
  conjunto,	
  de	
  cada	
  subconjunto	
  podemos	
  hacer	
  dos:	
  uno	
  que	
  sí	
  con.ene	
  
al	
   elemento	
   nuevo,	
   otro	
   que	
   no.	
   Es	
   decir,	
   con	
   k	
   +	
   1	
   elementos	
   tenemos	
   � 	
  
elementos,	
  como	
  queríamos	
  demostrar.	
  	
  

Problema	
  2.	
  El	
  problema	
  de	
  esta	
  vez	
  es	
  uno	
  par.cular	
  que	
  podemos	
  tratar	
  como	
  general,	
  
probar	
  con	
  inducción	
  y	
  así	
  resolver	
  el	
  caso	
  que	
  queríamos	
  tratar	
  de	
  manera	
  inmediata.	
  El	
  
problema	
   habla	
   de	
   un	
   tablero	
   de	
   � 	
   pero,	
   como	
   sucede	
   muchas	
   veces	
   —no	
  
siempre—	
   cuando	
   el	
   problema	
   .ene	
   el	
   número	
   del	
   año	
   en	
   que	
   se	
   aplica,	
   la	
   idea	
   es	
  
generalizarlo	
  a	
  un	
  tablero	
  de	
  cualquier	
  potencia	
  de	
  2.	
  	
  

Tenemos	
  un	
  tablero	
  de	
  � 	
  al	
  que	
  le	
  falta	
  un	
  cuadrito.	
  Queremos	
  demostrar	
  que	
  es	
  
posible	
   llenarlo	
  con	
  fichas	
  de	
  triminó	
  en	
  forma	
  de	
  L.	
  Lo	
  que	
  vamos	
  a	
  hacer	
  es	
  demostrar	
  
que	
  se	
  puede	
   llenar	
  cualquier	
  tablero	
  de	
   � ,	
  que	
   implica	
  directamente	
  nuestro	
  caso	
  
par.cular.	
  	
  

Primero,	
  necesitamos	
  mostrar	
  que	
  existe	
  un	
  caso	
  base	
  que	
  se	
  puede.	
  En	
  este	
  problema,	
  
mostraremos	
   que	
   es	
   posible	
   llenar	
   un	
   tablero	
   de	
   � 	
   independientemente	
   del	
   lugar	
  
donde	
  se	
  encuentre	
  el	
  hueco.	
  	
  

Para	
   este	
  

2k

2(2k ) = 2k+1

22014 × 22014

22014 × 22014

2n × 2n

2 × 2
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tablero	
  tan	
  pequeño,	
  considerar	
  todos	
  los	
  casos	
  es	
  tarea	
  sencilla.	
  	
  

Ahora,	
  el	
  paso	
  induc.vo.	
  Queremos	
  demostrar	
  que	
  si	
  se	
  puede	
  llenar	
  un	
  tablero	
  de	
  � 	
  
al	
  que	
  le	
  falta	
  un	
  cuadrito	
  con	
  triminós	
  en	
  forma	
  de	
  L,	
  entonces	
  también	
  se	
  puede	
  llenar	
  
un	
  tablero	
  de	
  � 	
  con	
  las	
  mismas	
  condiciones.	
  	
  

La	
   idea	
  es	
  tomar	
  nuestro	
  tablero	
  de	
   � 	
  y	
  par.rlo	
  en	
  cuatro	
  tableros,	
  trazando	
   las	
  
dos	
  perpendiculares	
  a	
  los	
  lados	
  que	
  pasan	
  por	
  los	
  puntos	
  medios.	
  Tenemos	
  cuatro	
  tableros	
  
de	
   	
  y	
  el	
  cuadrito	
  que	
  falta	
  .ene	
  que	
  estar	
  en	
  alguno	
  de	
  esos	
  cuatro .	
  Sin	
  pérdida	
  de	
  8

generalidad,	
  digamos	
  que	
  está	
  en	
  el	
  sub-­‐tablero	
  inferior	
  izquierdo.	
  Luego,	
  por	
  hipótesis	
  de	
  
inducción,	
   ese	
   sub-­‐tablero	
   de	
   � 	
   puede	
   ser	
   llenado.	
   Para	
   llenar	
   los	
   otros	
   tres	
   sub-­‐
tableros,	
   bastaría	
   con	
   ingeniárnosla	
   para	
   quitarles	
   un	
   cuadrito	
   a	
   cada	
   uno.	
   El	
   siguiente	
  
acomodo	
  concluye	
  la	
  inducción:	
  

� 	
  

Así,	
  si	
  se	
  puede	
  para	
  cualquier	
  tablero	
  de	
  � ,	
  debe	
  poderse	
  para	
  el	
  caso	
  par.cular	
  que	
  
nos	
  corresponde.	
  

2k × 2k

2k+1 × 2k+1

2k+1 × 2k+1

2k × 2k

2k × 2k

2n × 2n

 Este ataque de dividir puede llenarnos a otra demostración recursiva más directa: subdividiendo cada 8

tablero en cuatro sub-tableros iguales, tomando el sub-tablero donde debe estar el hueco y repitiendo 
esto, obtenemos una cadena de si y solo si que termina en un tablero de 2x2. 
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Falsa Inducción 

Vamos	
   a	
   demostrar	
   que	
   todas	
   las	
   pelotas	
   del	
   mundo	
   son	
   del	
   mismo	
   color 	
   usando	
  9

Inducción.	
   Primero,	
   el	
   caso	
   base.	
   Tomamos	
   una	
   pelota.	
   Claramente,	
   dicha	
   pelota	
   es	
   del	
  
mismo	
  color	
  que	
  sí	
  misma.	
  Luego,	
  suponemos	
  que	
  si	
  tenemos	
  n	
  pelotas,	
  todas	
  deben	
  ser	
  
del	
  mismo	
  color.	
  	
  

Ahora	
  nos	
  enfrentamos	
  al	
  caso	
  de	
  n	
  +	
  1	
  pelotas.	
  Separamos	
  una	
  de	
  ellas,	
  digamos	
  la	
  pelota	
  
X,	
  y	
  nos	
  quedamos	
  con	
  n	
  pelotas.	
  Luego,	
  por	
  hipótesis	
  de	
  inducción,	
  todas	
  esas	
  pelotas	
  son	
  
del	
  mismo	
  color.	
  Luego,	
  tomamos	
  una	
  pelota	
  cualquiera,	
  digamos	
  Y,	
  y	
  la	
  cambiamos	
  con	
  la	
  
que	
   dejamos	
   fuera.	
   Otra	
   vez	
   tenemos	
  n	
  pelotas	
   por	
   lo	
   que	
   todas	
   deben	
   ser	
   del	
  mismo	
  
color.	
  Esto	
  implica	
  que	
  X	
  y	
  Y	
  son	
  del	
  mismo	
  color	
  entre	
  ellas.	
  Luego,	
  las	
  n	
  +	
  1	
  pelotas	
  son	
  
todas	
  del	
  mismo	
  color.	
  	
  

Evidentemente,	
  no	
  todas	
  las	
  pelotas	
  del	
  mundo	
  son	
  del	
  mismo	
  color.	
  ¿Cuál	
  fue	
  el	
  error	
  que	
  
come.mos	
  en	
  esta	
  demostración?  10

 Puedes pensar que todas son azules, por ejemplo. Este mismo razonamiento se puede usar para 9

demostrar que todos los gatos son verdes o que todas las personas son mujeres. 

 (Spoiler) Lo que está mal es el caso base. Aunque sea lo normal, n = 1 no es el caso base pues no es 10

posible comparar más de una pelota cuando solo hay una pelota. El caso base debe ser n = 2 y no hay 
manera de demostrar que cualesquiera dos pelotas son del mismo color. 
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