Principio extremo: máximos y mínimos

1. Ejemplos

En algunos problemas, para hacer algunas demostraciones, puede resultar de mucha ayuda considerar máximos y mínimos valores de ciertas cosas. A veces incluso se puede usar para mostrar que un resultado es cierto procediendo por contradicción. A continuación, algunos ejemplos (la parte en donde se utiliza el principio extremo se marca en negritas):

i) Hay $n \geq 3$ puntos dados en el plano. Cada tres de ellos determinan un triángulo de área a lo más 1. Muestra que todos los puntos se encuentran dentro de un triángulo de área a lo más 4.

Solución.

Consideremos tres puntos A, B y C entre los n puntos dados que determinan un triángulo con la **máxima área posible**. Sea l_A la recta paralela a BC. Vemos que no hay un punto D más allá de esa recta, ya que si lo hubiera, su distancia a BC sería mayor que la de A, por lo que DBC sería un triángulo con área mayor, contradicción.

Ahora definimos las rectas l_B , l_C de forma análoga y definimos $K = l_B \cap l_C$, $L = l_A \cap l_C$ y $M = l_A \cap l_B$. Usando arguméntos análogos a los mostrados anteriormente, podemos concluir que todos los puntos se encuentran dentro del triángulo KLM. Para finálizar, observemos que este último tiene área a lo más 4, ya que el triángulo ABC es el formado por los puntos medios de los lados de KLM, y entonces el área de KLM es 4 veces el área de ABC.

ii) Sea n un entero positivo, y sea $W = \dots x_{-1}x_0x_1x_2\dots$ una palabra periódica infinita, que consiste únicamente de letras a y/o b. Supón que el periodo mínimo N de W es mayor que 2^n .

Se dice que una palabra finita U aparece en W si existen índices $k \leq \ell$ tales que $U = x_k x_{k+1} \dots x_{\ell}$. Una palabra finita U se dice ubicua si todas las palabras Ua, Ub, aU, y bU aparecen en W. Muestra que hay al menos n palabras ubicuas diferentes.

Solución.

Para cada palabra R de longitud m, a la cantidad de índices $i \in 1, 2, ..., N$ para los cuales R coincide con la sub-palabra $x_{i+1}x_{i+2}...x_{i+m}$ de W la llamamamos la multiplicidad de R y se denota por $\mu(R)$. Entonces una palabra R aparece en W si y sólo si $\mu(R) > 0$. Como cada ocurrencia de una palabra en W es sucedida por la letra a o la b, y también precedida por alguna de esas letras, se tiene

$$\mu(R) = \mu(Ra) + \mu(Rb) = \mu(aR) + \mu(bR)$$
 (1)

para todas las palabras R.

Afirmamos que la condición de que N es el mínimo periodo de W garantiza que cada palabra de longitud N tiene multiplicidad 1 o 0 dependiendo de si aparece o no. En efecto, si las palabras $x_{i+1}x_{i+2}\ldots x_{i+N}$ y $x_{j+1}\ldots x_{j+N}$ son iguales para algunos $1\leq i< j\leq N$, entonces $x_{i+a}=x_{j+a}$ para cada entero a, así que j-i es un periodo más chico.

Más aún, como N>2n, al menos una de las palabras a y b tiene una multiplicidad que es

estrictamente mayor que 2n-1.

Para cada k = 0, 1, ..., n - 1, sea U_k una sub-palabra de W cuya multiplicidad es estrictamente mayor que 2^k y cuya longitud es la máxima posible. Esa palabra existe por las observaciones hecha en los párrafos anteriores.

Fijemos un índice $k \in 0, 1, \ldots, n-1$. Como la palabra $U_k b$ es mayor que U_k , su multiplicidad es a lo más 2^k , por lo que en particular $\mu(U_k b) < \mu(U_k)$. Entonces, la palabra $U_k a$ tiene que aparecer, por (1). Por una razón análoga, las palabras $U_k b$, aU_k , y bU_k tienen que aparecer también. Así, la palabra U_k es ubicua. Más aún, si la multiplicidad de U_k fuera estrictamente mayor que 2^{k+1} , entonces por (1) al menos una de las dos palabras $U_k a$ y $U_k b$ tendría multiplicidad mayor que 2^k , lo que contradiría la maximalidad de U_k .

Así que tenemos $\mu(U_0) \leq 2 < \mu(U_1) \leq 4 < \ldots \leq 2n-1 < \mu(U_n-1)$, lo que implica en particular que las palabras $U_0, U_1, \ldots, U_{n-1}$ son distintas. Además, son ubicuas, por lo que podemos concluir.

2. Problemas

Llegó el momento de poner en prática el método del principio extremo. A continuación algunos problemas:

- 1. Se dice que un subconjunto B de $\{1, 2, ..., 2017\}$ tiene la propiedad T si cada tres elementos de B son los lados de un triángulo no degenerado. Encuentra la máxima cantidad de elementos que puede tener un conjunto con la propiedad T.
- 2. Műestra que no existe ninguna cuadrupla x, y, z, u de enteros positivos que satisfaga $x^2 + y^2 = 3(z^2 + u^2)$.
- 3. En cada casilla de un tablero de ajedrez infinito se ha escrito un entero positivo. Se sabe que cada número escrito es la media aritmética de sus 4 vecinos. Muestra que todos los números son iguales.
 - 4. Se tienen 2n puntos en el plano, n rojos y n azules. Muestra que es posible repartir los puntos en n parejas de puntos de distintos color, de tal forma que al conectarlos con segmentos no haya dos que se intersecten.
 - 5. Se tienen 3n puntos (no hay tres colineales) en el plano: n son azules, n blancos y n rojos. Cada punto se conecta con un segmento con otros n+1 puntos, de color distinto al primero. Muestra que se forma al menos un triángulo cuyos tres vértices son de colores distintos.
 - 6. En una fiesta con n personas, se sabe que entre cualesquiera 4 personas, hay o bien 3 personas que se conocen entre sí o bien 3 personas, tales que ningún par entre ellas se conoce. Muestra que las n personas se pueden separar en dos salones, de tal forma que en uno todos se conocen y en el otro nadie conoce a nadie.
 - 7. Se tienen $n \geq 3$ puntos en el plano. Muestra que todos son colineales, o existe al menos una recta que pasa por exactamente dos de ellos.
 - 8. Encuentra todos los enteros positivos n tales que, al escribir los números del 1 al n en orden, en notación decimal, el número resultante es capicúa.

3. Hints

- 1. Considera los dos elementos más pequeños del conjunto.
- 2. Procede por contradicción: considera una solución que **minimiza la suma** x+y+z+u.
- 3. Considera el **número más chico** que se ha escrito. ¿Por qué esto no funciona si los números que se escriben no son necesariamente enteros positivos?
- 4. Considera la menor suma de longitudes de segmentos posible, entre todos los emparejamientos.
- 5. Considera el punto que está conectado a la mayor cantidad de puntos de algún color.
- 6. Considera la mayor cantidad de personas que se pueden colocar en un salón de forma que todas se conozcan entre sí.
- 7. Procede por contradicción: Supón que no se cumple ninguno de los dos casos y fíjate en todas las rectas que pasan por al menos dos de los puntos. Considera **la menor distancia posible** entre uno de los puntos (P) y una de tales rectas (l) que no pasa por ese punto. Sea D el pie de la perpendicular de P a l. Observa que D divide a l en dos semirrectas así que hay al menos dos puntos en alguna de ellas.
- 8. Prodece por contradicción: considera la **máxima longitud posible** de una cadena de 0's en la representación decimal del número resultante. Entre esas cadenas de 0's de longitud máxima, considera la que está **más a la derecha**.