3.3. Teorema chino de los restos

Teorema 3.3. Sean m_1, m_2, \ldots, m_k enteros coprimos dos a dos. Entonces el sistema de congruencias

$$x \equiv a_1 \pmod{m_1},$$
 $x \equiv a_2 \pmod{m_2},$
 $x \equiv a_n \pmod{m_k}$

tiene una solución única módulo $m_1m_2\cdots m_k$.

Demostración. Sea $m=m_1m_2\cdots m_k$. Para cada $i=1,2,\ldots,k$ sea $M_i=m/m_i$. Entonces $\operatorname{mcd}(M_i,m_i)=1$ y por lo tanto existe x_i tal que de $M_ix_i\equiv 1\pmod{m_i}$. Sea

$$x = M_1 x_1 a_1 + M_2 x_2 a_2 + \dots + M_k x_k a_k.$$

Es inmediato verificar que x es solución del sistema de congruencias. Si x' es cualquier otra solución, entonces $x' \equiv x \pmod{m_i}$ para i = 1, 2, ..., k y como los m_i son coprimos dos a dos se deduce que $x' \equiv x \pmod{m}$.

Este teorema permite reducir la solución de ecuaciones polinómicas en congruencias de un módulo m cualquiera al caso en que el módulo sea una potencia de un primo. En efecto, si $m=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$ es la descomposición en factores primos de m, la congruencia $P(x)\equiv 0\pmod m$ es equivalente al sistema

$$\begin{array}{lll} P(x) & \equiv & 0 \pmod{p_1^{a_1}}, \\ P(x) & \equiv & 0 \pmod{p_2^{a_2}}, \\ & \cdots & \cdots & \cdots \\ P(x) & \equiv & 0 \pmod{p_k^{a_k}}. \end{array}$$

En efecto, sea P(x) un polinomio con coeficientes enteros. Si $P(x) \equiv 0 \pmod m$ tiene solución, evidentemente esa solución satisface también todas las congruencias del sistema. Recíprocamente, si x_i es una solución de la congruencia $P(x) \equiv 0 \pmod {p_i^{a_i}}$, entonces por el teorema chino de los restos existe un x tal que $x \equiv x_i \pmod {p_i^{a_i}}$ para $i=1,2,\ldots,k$, y por lo tanto $P(x) \equiv P(x_i) \equiv 0 \pmod {p_i^{a_i}}$ para $i=1,2,\ldots,k$ y $P(x) \equiv 0 \pmod m$.

3.4. Teoremas de Fermat, Euler y Wilson

Función ϕ de Euler

Si n es un número natural se define $\phi(n)$ como la cantidad de números del conjunto $\{1,2,\ldots,n\}$ que son coprimos con n. Por ejemplo $\phi(6)=2$ ya que de los números 1,2,3,4,5 y 6 solamente 1 y 5 son coprimos con 6.

La función ϕ es multiplicativa, es decir que:

Teorema 3.4. Si a y b son números naturales coprimos, entonces

$$\phi(ab) = \phi(a)\phi(b).$$

Demostración. Cada natural desde 1 hasta ab se puede escribir en la forma qa+r, con $0 \le q \le b-1$ y $1 \le r \le a$. Para que qa+r sea coprimo con ab, debe serlo con a y con b. Pero $\operatorname{mcd}(qa+r,a) = \operatorname{mcd}(r,a)$, luego r debe ser coprimo con a. Hay $\phi(a)$ de estos r. Para cada uno de ellos los números r, a+r, 2a+r,..., (b-1)a+r son un sistema completo de residuos módulo b, ya que la diferencia de dos de ellos (diferentes) es de la forma ja, con $1 \le j \le b-1$, y por lo tanto no es divisible entre b. Esto significa que $\phi(b)$ de ellos son coprimos con b, y por lo tanto con ab. Esto nos da un total de $\phi(a)\phi(b)$ números coprimos con ab, entre los naturales desde 1 hasta ab.

Si p es primo y a natural entonces los números entre 1 y p^a que no son coprimos con p^a son p, 2p, 3p,..., $p^{a-1}p = p^a$, que son p^{a-1} . Luego

$$\phi(p^a) = p^a - p^{a-1} = p^a(1 - 1/p).$$

Usando este resultado y el hecho de que ϕ es multiplicativa, resulta que si $n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$ entonces

$$\phi(n) = (p_1^{a_1} - p_1^{a_1 - 1})(p_2^{a_2} - p_2^{a_2 - 1}) \cdots (p_k^{a_k} - p_k^{a_k - 1})$$
$$= n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right).$$

Teorema 3.5 (Teorema de Euler).

Si mcd(a, n) = 1 entonces

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
.

Demostración. Sean $c_1, c_2, \ldots, c_{\phi(n)}$ los elementos de $\{1, 2, \ldots, n\}$ que son coprimos con n y pongamos $ac_i = q_i n + r_i$, para $i = 1, \ldots, \phi(n)$, con $0 \le r_i < n$. Es claro que los restos r_i son todos diferentes, ya que $r_i = r_j \Longrightarrow ac_i = ac_j \pmod{n}$ $\Longrightarrow c_i = c_j \pmod{n}$ (por ser a coprimo con n), absurdo. Además $\operatorname{mcd}(r_i, n) = \operatorname{mcd}(ac_i - q_i n, n) = \operatorname{mcd}(ac_i, n) = 1$. Se concluye que

$$\{c_1, c_2, \dots, c_{\phi(n)}\} = \{r_1, r_2, \dots, r_{\phi(n)}\}.$$

Pero $r_i \equiv ac_i \pmod{n}$, por lo tanto

$$c_1 c_2 \cdots c_{\phi(n)} = r_1 r_2 \cdots r_{\phi(n)} \equiv a^{\phi(n)} c_1 c_2 \cdots c_{\phi(n)} \pmod{n},$$

de donde resulta $a^{\phi(n)} \equiv 1 \pmod{n}$.

Un caso particular importante se presenta cuando n es primo. Observe que si p es primo entonces $\phi(p) = p - 1$, por lo tanto se tiene:

Teorema 3.6 (Teorema (pequeño) de Fermat). $Si p es primo y p \nmid a$, entonces

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Otro resultado interesante es el siguiente:

Teorema 3.7 (Teorema de Wilson). Para cualquier primo p se cumple

$$(p-1)! \equiv -1 \pmod{p}$$
.

Demostración. Cada entero i desde 1 hasta p-1 tiene un (único) inverso multiplicativo en el mismo rango. Si $x^2\equiv 1\pmod p$ entonces $(x+1)(x-1)\equiv 0\pmod p$, de donde los únicos que son inversos de sí mismos son 1 y p-1. Es decir que los enteros 2, 3,..., p-2 se agrupan en parejas de inversos multiplicativos y por lo tanto

$$(p-1)! \equiv 1 \cdot (p-1) \cdot 2 \cdot 3 \cdots (p-2) \equiv -1 \pmod{p}.$$

dosta elegazian que al a es impor escenas e

3.5. Lema de Hensel

El Lema de Hensel, también conocido como Lema de Mihail o Lema de levantamiento de exponentes, es una herramienta muy çutil para resolver problemas olímpicos de teoría de números, especialmente aquellos relacionados con congruencias.

Primero algo de notación: si p es un número primo, a y n son enteros y $n \geq 0$, escribiremos

$$p^n \parallel a$$

para indicar que $p^n \mid a$ pero $p^{n+1} \nmid a$. En otras palabras, $p^n \parallel a$ si y sólo si p^n es la mayor potencia de p que divide a a. Ejemplos: $3 \parallel 30, 2^3 \parallel 72, 5^4 \parallel 10000$.

Teorema 3.8. Sean p un primo impar, a, b, n, r y s enteros, n, $r \ge 1$. Si $p^r \parallel a - b$, $p \nmid b$ y $p^s \parallel n$, entonces $p^{r+s} \parallel a^n - b^n$.

Demostración. Primero probaremos que $p^s \parallel \frac{a^n - b^n}{a - b}$ por inducción en s. Para s = 0 se tiene que $p \nmid n$. Como $a \equiv b \pmod{p}$ resulta $a^j \equiv b^j \pmod{p}$ y $a^j b^{n-j-1} \equiv b^{n-1} \pmod{p}$, y sumando se tiene

$$\frac{a^n - b^n}{a - b} = \sum_{j=0}^{n-1} a^j b^{n-j-1} \equiv nb^{n-1} \not\equiv 0 \pmod{p}.$$

Supongamos ahora que $p^s \parallel \frac{a^n - b^n}{a - b}$. Pongamos a = b + xp. Entonces $a^{nj} \equiv b^{nj} + b^{nj}$ $nib^{n(j-1)}xp \pmod{p^2}$ v se tiene

$$\frac{a^{np} - b^{np}}{a^n - b^n} = \sum_{j=0}^{p-1} a^{nj} b^{n(p-j-1)} \equiv \sum_{j=0}^{p-1} (b^{nj} + njb^{n(j-1)} xp) b^{n(p-j-1)}$$

$$\equiv pb^{n(p-1)} + pnxb^{n(p-2)} \sum_{j=0}^{p-1} j$$

$$\equiv pb^{n(p-1)} + pnxb^{n(p-2)} \frac{p(p-1)}{2}$$

$$\equiv pb^{n(p-1)} \pmod{p^2}.$$

Por lo tanto

$$p^{s+1} \parallel \frac{a^{np} - b^{np}}{a^n - b^n} \frac{a^n - b^n}{a - b} = \frac{a^{np} - b^{np}}{a - b},$$
 ección.

completando la inducción. Finalmente, como
$$a^n-b^n=\frac{a^n-b^n}{a-b}(a-b)$$
 es claro que $p^{r+s}\parallel a^n-b^n$.

Corolario 3.9. Sean p un primo impar, a, b, n, r y s enteros, $n, r \ge 1$ y n impar. Si $p^r \parallel a + b$, $p \nmid b$ y $p^s \parallel n$, entonces $p^{r+s} \parallel a^n + b^n$.

Demostración. Basta observar que si n es impar entonces a+b=a-(-b) y $a^n + b^n = a^n - (-b)^n.$

Para p=2 el lema de Hensel como lo hemos enunciado no es cierto, por ejemplo $2 \parallel 3 - 1 \text{ y } 2 \parallel 2$, pero $2^3 \parallel 3^2 - 1^2$. Sin embargo vale un resultado similar:

Teorema 3.10. Sean a, b, n, r y s enteros, $n, r, s \ge 1$. Si $2^r \parallel \frac{a^2 - b^2}{2}$, $2 \nmid b$ y $2^s \parallel n$, entonces $2^{r+s} \parallel a^n - b^n$.

Demostración. Primero probaremos que $2^{s-1} \parallel \frac{a^n - b^n}{a^2 - b^2}$ por inducción en $s \ge 1$. Para s=1 se tiene que n=2m, con m impar. Como $2\mid \frac{a^2-b^2}{2}$ debe ser $a\equiv b\pmod{2}$, de donde $a^{2j}\equiv b^{2j}\pmod{2}$ y $a^{2j}b^{2m-2j-1}\equiv b^{2m-1}\pmod{2}$, y sumando se obtiene

$$\frac{a^{2m} - b^{2m}}{a^2 - b^2} = \sum_{j=0}^{m-1} a^{2j} b^{2m-2j-1} \equiv mb^{2m-1} \equiv 1 \pmod{2},$$

o sea que $2^0 \parallel \frac{a^n - b^n}{a^2 - b^2}$. Supongamos ahora que $p^{s-1} \parallel \frac{a^n - b^n}{a^2 - b^2}$. Como a y b son impares y n es par se tiene $a^n \equiv b^n \equiv 1 \pmod 4$ y por tanto $a^n + b^n \equiv 2 \pmod 4$, es decir que $2 \parallel a^n + b^n$. Entonces

$$p^{s} \parallel \frac{a^{n} - b^{n}}{a^{2} - b^{2}} (a^{n} + b^{n}) = \frac{a^{2n} - b^{2n}}{a^{2} - b^{2}},$$

completando la inducción.

Finalmente, como
$$a^n-b^n=2\frac{a^n-b^n}{a^2-b^2}\frac{a^2-b^2}{2}$$
 es claro que $p^{r+s}\parallel a^n-b^n$.

3.6. Problemas

Problema 3.1. Un número se escribe con cien ceros, cien unos y cien doses, en algún orden. ¿Puede ser un cuadrado perfecto?

Problema 3.2. Pedro multiplicó dos enteros de dos cifras cada uno y codificó los factores y el producto con letras, usando letras iguales para dígitos iguales y letras diferentes para dígitos diferentes. Entonces le mostró al maestro su trabajo: $AB \cdot CD = EEFF$. Pero el maestro le contestó: Revisa lo que hiciste, pues cometiste un error. ¿Cómo supo eso el maestro?

Problema 3.3. Permutando las cifras del número

1223334444555556666667777777

¿podrá obtenerse un cuadrado perfecto?

Problema 3.4. Determine todos los valores de k para los cuales el número 111...1, compuesto por k unos, es un cuadrado perfecto.

Problema 3.5. ¿Alguno de los números que se pueden obtener permutando las cifras de 86420 es un cuadrado perfecto?

Problema 3.6. Halle todos los enteros positivos n tales que n! + 5 sea un cubo perfecto.

Problema 3.7. Si m y n son enteros tales que m^2+n^2 es múltiplo de 3, pruebe que tanto m como n son múltiplos de 3.

Problema 3.8. Hallar el menor entero positivo x tal que $21x \equiv 2 \pmod{37}$.

Problema 3.9. Si x, y, z son enteros tales que $x^2 + y^2 = z^2$, pruebe que al menos uno de ellos es múltiplo de 3. Es sobot effett sourcisos avertires a sol sobot effett

Problema 3.10. Si tres números primos mayores que 3 están en progresión aritmética, pruebe que la razón (o diferencia común) de la progresión es múltiplo de 6

Problema 3.11. Se tienen 7 números enteros tales que la suma de 6 cualesquiera de ellos es divisible entre 5. Pruebe que los 7 números son múltiplos de 5.

Problema 3.12. Resuelva el sistema de congruencias

$$2x \equiv 3 \pmod{5}$$
, $3x \equiv 5 \pmod{7}$, $5x \equiv 7 \pmod{11}$.

Problema 3.13. Si x, y, z son enteros tales que $x^2 + y^2 + z^2$ es múltiplo de 4, pruebe que tanto x, y, z son los tres pares.

Problema 3.14. (OMCC 2014/6) Un entero positivo n es divertido si para todo d divisor positivo de n, d+2 es un número primo. Encuentre todos los números divertidos que tengan la mayor cantidad posible de divisores.

Problema 3.15. Pruebe que $2222^{5555} + 5555^{2222}$ es divisible entre 7.

Problema 3.16. Determine el valor de d si el número

$$\underbrace{888 \cdots 888}_{50 \ 8's} d\underbrace{999 \cdots 999}_{50 \ 9's}$$

es divisible entre 7.

Problema 3.17. ¿Qué resto se obtiene al dividir 2^{3²⁰¹¹} entre 17?

Problema 3.18. Pruebe que para todo natural n se cumple $\sum_{d|n} \phi(d) = n$.

Problema 3.19. ¿Cuál es la cifra de las unidades de $\frac{7^{7^7}}{2015 \ 7's}$

Problema 3.20. Halle las tres últimas cifras de $2003^{2002^{2001}}$.

Problema 3.21. Pruebe que existe n tal que 3^n tiene al menos 2011 ceros consecutivos.

Problema 3.22 (IMO 2005/4). Considere la sucesión a_1, a_1, \ldots definida por

$$a_n = 2^n + 3^n + 6^n - 1$$

para todos los n enteros positivos. Halle todos los enteros positivos que son coprimos con todos los términos de la sucesión.

Problema 3.23. Pruebe que, dado cualquier natural N, existe n tal que 2^n tiene al menos N ceros consecutivos.

Problema 3.24. (IMO 2009/1) Sea n un entero positivo y sean $a_1, a_2,..., a_k$ $(k \ge 2)$ enteros distintos del conjunto $\{1, 2, ..., n\}$ tales que n divide a $a_i(a_{i+1}-1)$ para i=1,2,...,k-1. Demostrar que n no divide a $a_k(a_1-1)$.

Problema 3.25. Halle el menor entero positivo n tal que $2^{2007} \mid 17^n - 1$.

Problema 3.26. (Rusia 1996) Supongamos que $a^n + b^n = p^k$, donde a, b, y k son enteros positivos, p es un primo iompar y n > 1 es un entero impar. Pruebe que n debe ser una potencia de p.

Problema 3.27. (IMO 1990/3) Halle todos los enteros positivos n tales que $\frac{2^n+1}{n^2}$ es entero.

Problema 3.28. (ORP 2004, 2N P2) Encontrar todos los valores enteros positivos de k, n y p primo que satisfacen la ecuación $5^k - 3^n = p^2$.

Problema 3.29. (OMCC 2001/3) Encontrar todos los números naturales N que cumplan las dos condiciones siguientes:

- \blacksquare Sólo dos de los dígitos de N son distintos de 0 y uno de ellos es 3.
- \blacksquare N es un cuadrado perfecto.

Problema 3.30. (IMO 2000/5) ¿Existe un entero positivo n que tenga esactamente 2000 divisores primos y que divida a $2^n + 1$?

Problema 3.31. (IMO 2003/6) Sea p un número primo. Demostrar que existe un primo q tal que, para todo entero n, el número $n^p - p$ no es divisible por q.